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ABSTRACT 
This paper proposes a new model, called Soil Temperature prediction via 

Self-Training (STST), which successfully estimates the soil temperature 

at various soil depths by using machine learning methods. The previous 

studies on soil temperature prediction only use labeled data which is 

composed of a variable set X and the corresponding target value Y. Unlike 

the previous studies, our proposed STST method aims to raise the sample 

size with unlabeled data when the amount of pre-labeled data is scarce to 

form a model for prediction. In this study, the hourly soil-related data 

collected by IoT devices (Arduino Mega, Arduino Shield) and some 

sensors (DS18B20 soil temperature sensor and soil moisture sensor) and 

meteorological data collected for nearly nine months were taken into 

consideration for soil temperature estimation for future samples. 

According to the experimental results, the proposed STST model 

accurately predicted the values of soil temperature for test cases at the 

depths of 10, 20 30, 40, and 50 cm. The data was collected for a single 

soil type under different environmental conditions so that it contains 

different air temperature, humidity, dew point, pressure, wind speed, wind 

direction, and ultraviolet index values. Especially, the XGBoost method 

combined with self-training (ST-XGBoost) obtained the best results at all 

soil depths (R2 0.905-0.986, MSE 0.385-2.888, and MAPE 3.109%-

8.740%). With this study, by detecting how the soil temperature will 

change in the future, necessary precautions for plant development can be 

taken earlier and agricultural returns can be obtained beforehand. 
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1. Introduction 
 

As technology advances, new solutions are emerging to help simplify agriculture and improving productivity and consumer 

satisfaction with the increased interest in precision agriculture. The applications of modern information technologies, machine 

learning, and artificial intelligence offer favorable computational as well as analytical solutions by employing data from multiple 

sources for decision making in the management of crop production (Friedl 2018). Precision agriculture, soil temperature, and 

climatic parameters have complex inter-relationships and this complex problem can be efficiently solved using machine learning 

techniques. The estimation of greenhouse gas emission from agricultural soils (Hamrani et al. 2020), evaluation of farm 

efficiency (Nandy & Singh 2020), weed classification (Dadashzadeh et al. 2020), plant disease detection (Giraddi et al. 2020), 

and the determination of the concentration of chemical matters in a grain (Niedbała et al. 2020) are some of the agricultural 

issues where machine learning is frequently implemented, nowadays. 

 

Soil is of great importance in the terrestrial ecosystem by affecting the physical, biological, and chemical processes. Many 

studies in agriculture are canalized into this field, especially in terms of the effects of soil moisture and soil temperature on crop 

yields and plant growth and due to their impact on organic and chemical substances found in soil (Hillel 2005; Yang et al. 2019). 

Soil temperature plays an important role in agriculture since it is closely related to the myriad events occurring in the soil. It is a 

very important ecological factor that affects plant life at all stages from seed germination to seedling growth and development. 

It has a great effect on germination speed and duration. Although other conditions are suitable, if the temperature is too low or 

too high, there will be little or no germination. If the soil temperature is suitable, biological and chemical activities in the soil 

continue. These activities stop when the temperature drops and the soil freezes. On the other side, soil resistance to the physical 

events such as erosion and subsidence can drop dramatically at high soil temperatures. For this reason, factors affecting soil 

warming and control of soil temperature are extremely important. If we predict further changes in soil temperature, we can 

develop new strategies in different application areas such as setting up automatic cooling / heating system or irrigation system 

and determining the planting dates of temperature-sensitive crops etc.  

 

Because of the importance of the subject, various different regression and statistical analysis techniques were proposed 

considering machine learning such as support vector machines (SVM) (Xing et al. 2018), to estimate soil temperature, and 

decision tree regression (Pekel 2020) and the least-squares support vector machine (Ren et al. 2019) to predict soil moisture and 
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collaborative data mining using the algorithms of local polynomial regression, neural networks, k-nearest neighbor, support 

vector machine (Anton et al. 2019) to estimate both soil temperature and soil moisture. 

 

The soils of Turkey are divided into three major groups: zonal, intrazonal, and azonal. Zonal soils that are formed by the 

dissolution of rocks under the influence of climatic conditions and vegetation consist of brown forest soils, podsolic forest soils, 

Terra-Rossa's, chernozems, brown steppe soils, chestnut steppe soils. Vertisols, rendzinas, and volcanic sandy soils are in the 

category of intrazonal soils that reflect the characteristics of the bedrock. Alluvial/colluvial soils and loesses are examples of 

azonal soils that are not dependent on natural factors such as climate and vegetation but are formed due to accumulation by the 

effect of external factors such as streams and wind (Gönençgil et al. 2016; Akengin & Dölek 2019). 

 

The soil temperature of Turkey at the depth of 0.5 cm increases from the Black Sea coast to the Aegean and Mediterranean 

coasts and decreases continuously from the coastal belt to the mountains and Eastern Anatolia. The lowest underground 

temperature varies between -3 °C and -6 °C in the higher parts of Eastern Anatolia. The temperature varying between 1-3 °C in 

Central Anatolia rises to 4-6 °C in the Black Sea, Marmara, and North Aegean coastal belt, and to 9-10 °C in the Southern 

Aegean and Mediterranean coastal belt. It is between 3-6 °C on the low plains of Southeastern Anatolia. Soil temperature varies 

between 2-14 °C at a depth of 100 cm in winter. The temperature, which is 2-3 °C in the higher parts of Eastern Anatolia, 

increases to 8-9 °C in the Black Sea coastal zone and to 11-13 °C in the Aegean and Mediterranean coasts. The temperature, 

which is between 4-6 °C in Central Anatolia, rises above 10 °C in Southeastern Anatolia. The soil temperature at 0.5 cm depth 

in July, which characterizes the summer period, varies between 20-25 °C in Eastern Anatolia and 25-30 °C in Central Anatolia. 

The temperature, which is around 25 °C in the Black Sea coastal zone, reaches 30-35 °C in the Aegean coasts and 35-38 °C in 

Southeastern Anatolia. The temperature changes between 13-27 °C in 100 cm deep soil in July. The lowest decrease in the soil 

temperature towards the bottom in July occurs in the Eastern Anatolia and the Black Sea coastal zone, the highest decrease in 

the Mediterranean and Southeastern Anatolia. As a matter of fact, the temperature decrease at the depth of 0.5 cm to 100 cm in 

July reaches 5 to 7 °C on the Black Sea coast, 7 to 10 °C in Central Anatolia and 10 °C in Southeastern Anatolia (Gönençgil et 

al. 2016). 

 

Table 1 displays the recent machine learning studies taking soil temperature prediction in Turkey as the main subject. In 

addition to the past values of soil temperature, meteorological factors such as air temperature, relative humidity, and solar 

radiation, etc. were generally used as input for the applied models for estimation.  The experimental studies were made from 5 

cm to 100 cm depth in general. The performed method was mostly artificial neural networks (ANN) among them.  
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Table 1- Recent studies for soil temperature prediction in Turkey* 

 

Ref / Study  Area Aim  Data Methods 
Performance 

Measure 

Alizamir et al. 2020b /  The 

city of Mersin  

Monthly ST prediction at 

depths of 5, 10, 50, and 

100 cm 

25-year (1986–2010) 

monthly values of AT, 

SR, RH, WS, and ST 

ELM, 

ANN, 

CART, and 

GMDH 

RMSE, NS, 

R2 

Kisi et al. 2017 / The cities 

of Adana and Mersin 

Monthly ST prediction at 

the depths of 10, 50, and 

100 cm 

25-year (1986–2010) 

monthly values of AT, 

SR, RH, WS, and ST 

ANN, 

ANFIS, 

and GP 

RMSE, 

MARE, NS, 

R2 

Yener et al. 2017 / All of the 

81 provinces in Turkey 

Monthly ST prediction 

for shallow geothermal 

applications at depths of 

5, 10, 20, 50, and 100 cm 

Monthly values of AT 

and ST between 1960 

and 2015 

TIR, ANN, 

PDV, and 

soil heat 

calculator 

program 

Maximum 

average 

percentage 

error 

Citakoglu 2017 / 261 

stations all over Turkey 

Monthly ST prediction at 

depths of 5, 10, 20, 50, 

and 100 cm 

AT, P, and ST values 

between 20 and 45 years 

of data (over the period 

from 1974 through 

2010) 

ANN, 

ANFIS, 

and MLR 

MAE, RMSE, 

R2 

Kisi et al. 2015 / The city of 

Mersin 

Monthly ST prediction at 

depths of 5, 10, 50, and 

100 cm 

25-year (1986–2010) 

monthly values of AT, 

SR, RH, WS, and ST 

MLP, 

RBNN, 

and GRNN 

RMSE, MAE, 

R2 

Bilgili M et al. 2013 / The 7 

meteorological stations, 

namely, Afyonkarahisar, 

Aydın, Denizli, Kütahya, 

Uşak Manisa, and Muğla as 

the neighboring stations, and 

İzmir as the target station 

Monthly ST prediction of 

a target station only using 

the data of neighboring 

stations at depths of 5, 

10, 20, 50, and 100 cm 

Monthly ST data 

between 2000 and 2006 

SR analysis 

and ANN 
MAPE, R 

Bilgili M 2012 / Kütahya, 

Manisa, Usak, 

Afyonkarahisar, Izmir, 

Aydın, Denizli, and Mugla 

Monthly ST prediction at 

depths of 5, 10, 20, 50 and 

100 cm 

Monthly AT and ST 

data between 2000 and 

2006 

ANN MAE, R 

Bilgili M 2011 /  The city of 

Adana 

Monthly ST prediction at 

depths of 5, 10, 20, 50, 

and 100 cm 

Monthly values of AT, 

AP, RH, WS, R, and ST 

between 2000 and 2007 

ANN MAPE, R 

Ozturk et al. 2011 / 66 

Turkish state meteorological 

service locations 

Monthly ST prediction at 

depths of 5, 10, 20, 50 and 

100 cm 

Altitude, latitude, 

longitude, monthly 

values of AT, SD, SR, 

AT between 2006-2008 

ANN RMSE, R 

Bilgili M 2010 / The city of 

Adana 

Monthly ST prediction at 

depths of 5, 10, 20, 50 and 

100 cm 

Monthly values of ST, 

AT, AP, WS, RH, R, 

SR, SD between 2000 

and 2007 

LR, NLR, 

and ANN 
MAPE, R 

*ELM, Extreme learning machine; ANN, Artificial neural networks; CART, Classification and regression trees; GMDH, Group method of data 

handling; ANFIS, Adaptive neuro-fuzzy inference system; GP, Genetic programming; TIR, Thermal infrared technique; PDV, Philip and de Vries 

model; SR, Stepwise regression; LR, Linear regression; NLR, Nonlinear regression; RMSE, Root mean square error; NS, Nash-Sutcliffe coefficient; 

R2, Coefficient of determination; MARE, Mean absolute relative errors; MAPE, Mean absolute percentage error; R, Correlation coefficient; MAE, 

Mean absolute error; AT, Air temperature; SR, Solar radiation; RH, Relative humidity; WS, Wind speed; P, Precipitation; AP, Atmospheric pressure; 

R, Rainfall; SD, Sunshine duration. 

 

Differently from the mentioned studies, this is the first study that is performed by one of the semi-supervised learning 

techniques known as “self-training” in the subject of soil temperature prediction. Semi-supervised learning is a machine learning 

approach in which there are a small number of samples whose output is known and a large number of samples with unknown 

labels to develop a classification/regression model during training (Belkin et al. 2006). One of the semi-supervised learning 

methods is self-training (Zhu & Goldberg 2009).  

 

A novel model, called Soil Temperature prediction via Self-Training (STST) is proposed. The STST facilitates the capability 

of temperature estimation for new samples in case there are few numbers of labeled samples to discover the hidden patterns.  

 

This is the first time that the analysis is being reported in detail to determine which regression method provides the most 

accurate predictions under the self-training framework and the variation in the performances.  For this purpose, it compares the 

self-training versions of machine learning algorithms, including Random Forest (RF), Support Vector Regression (SVR), K-

nearest Neighbors Regression (KNNReg), Extremely Randomized Trees (ETReg), Decision Tree Regression (DTReg), and 

Extreme Gradient Boosting (XGBoost). 
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This study is also original in that it investigates the performances of the semi-supervised machine learning algorithms on soil 

temperature prediction with different ratios of labeled data varying from 5% to 85% with an increment of 5. It should be 

highlighted that this paper is the first to propose a multi-depth self-training learning framework that considers estimating the soil 

temperatures at five different soil depths (10, 20, 30, 40, and 50 cm). It presents a new application of semi-supervised machine 

learning to provide a smart way of soil temperature prediction. The purpose is to estimate the soil temperature in Izmir, Turkey 

by investigating the dynamics of the past soil temperature & soil moisture data and the meteorological data.  

 

2. Material and Methods 
 

In this section, the materials used to collect data, the proposed “Soil Temperature prediction via Self-Training” (STST) model, 

and the machine learning methods used in the experiments are presented.  

 

2.1. Data collection 

 

The location of the experimental area is Izmir, Turkey during the dates of 01.09.2019 and 22.05.2020. Izmir is located in the 

Aegean region of Turkey between the latitude of 38° 24′ 46″ and the longitude of 27° 8′ 18″. It is located in the Mediterranean 

climate zone and it has hot and dry summers and warm and rainy winters. In the middle latitude zone, it is open to marine effects 

and has a climate affected by the tectonic characteristics of the coastal Aegean strip and the bay having inland sea character. 

Depending on the sunshine duration and sufficient amount of rainfall, the soil structure has an agriculturally suitable climate 

(Turkish State Meteorological Service, 2021). While the yearly mean value of rainfall is 700.2 mm, the yearly mean values of 

air temperature and soil temperature are 17.6 °C and 19.8 °C, respectively (Republic of Turkey Ministry of Agriculture and 

Forestry 2021). Its soil moisture and temperature regimes are xeric and thermal (Bolca et al. 2011; Kapur et al. 2018). Figure 1 

shows the study area in the location map. 

 

 
 

Figure 1- The location map of the study area 

 

The distribution of the soil types are as follows: red-brown Mediterranean soils and limeless brown forest soils with the ratio 

of 16%, alluvial and colluvial soils with the ratio of 12%, brown forest soils with the ratio of 4%, red Mediterranean soils, and 

rendzinas with the ratio of 3%, chestnut soils with the ratio of 0.4% and regosols% with the ratio of 0.1. 22.5% of the soils in 

İzmir are deep, or very deep, 4% medium-deep, 38.5% shallow, and 35% very shallow (Dizdar 2003). 

 

The properties of the collected soils for all depths are as follows: pH (KCL):7.2 pH, organic matter: 7.3%, total nitrogen: 

975.0 kg/da, total phosphorus: 300.00 kg/da, total potassium 43.99 kg/da, clay: 9.1%, cation exchange capacity: 347.1 mmol+/kg. 

The soil texture is sandy loam.   

 

A part of the dataset used in the experiments was collected using IoT devices (Arduino Mega, Arduino Shield) and various 

sensors (DS18B20 soil temperature (ST) sensor and soil moisture (SM) sensor for measuring hourly data at the soil depths of 

10, 20, 30, 40, and 50 cm, and light-dependent resistor (LDR) sensor for hourly light intensity (LI)). The meteorological part of 
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the dataset was obtained from the web page of weather.com that provides air temperature (AT), humidity (H), dew point (DP), 

air pressure (AP), wind speed (WS), wind direction (WD), and ultraviolet index (UV). Hourly values of the aforementioned 

features were taken into consideration. After data collection, the records with missing values were removed. Finally, 4500 

instances were left for data analysis.  

 

A sample fragment of the dataset at the depth of 50 cm between 01:00 and 04:00 p.m. on September 19, 2019, is given as 

hourly in Table 2. SM and LI sensors have raw analogue reading values of 0 to 1023 as shown in Table 2. If the value of SM is 

close to 1023, it means soil moisture is high, otherwise low. In the same manner, if the value of LI is high, the light intensity is 

a lot. For the prediction of ST of each depth, SM values from all depths are taken into consideration. 

 
Table 2- A part of the dataset used in the experiments* 

 

AT 

(°C) 

H 

(%) 

DP 

(°C) 

AP 

(mb) 

UV WS 

(km/s) 

WD LI SM50 SM40 SM30 SM20 SM10 ST50 

(°C) 

28 40 13 1015.2 7/10 3 Northwest 900 322 335 268 270 282 22.56 

29 32 11 1013.9 7/10 5 Northwest 874 316 337 267 267 279 23.00 

29 34 11 1014.2 5/10 18 West 866 320 339 267 266 276 23.38 

28 28 13 1014.2 4/10 23 West 843 317 339 275 264 272 23.82 

*AT, Air temperature; H, Humidity; DP, Dew point; AP, Air pressure; WS, Wind speed; WD, Wind direction; UV, Ultraviolet index; LI, Light intensity; 

SM, Soil moisture; ST, Soil temperature. 

 

2.2. Proposed method: Soil temperature prediction via self-training (STST) 

 

The rationale behind self-training is to increase the training set size with unlabeled data when there is a very small number of 

pre-labeled data compared to unlabeled ones so that a more optimized classifier model can be constructed using the updated 

labeled training set. Considering the problem of soil temperature prediction, we may not always be able to access all past data 

whose results are known to estimate new values. Because of the high cost of manual labeling, it is hard to obtain sufficient, 

reliable, and up-to-date labeled data for effective soil temperature prediction. In such cases, by applying the proposed Soil 

temperature prediction via self-training (STST) model, we first estimate the values for the unlabeled historical samples and then 

use all past records to estimate the new values for the future records. 

 

The proposed approach (STST) has a number of advantages that can be summarized as follows: 

 

- The traditional soil temperature prediction is limited to using only labeled data to build a regression model. Differently 

from the previous studies, the proposed STST approach overcomes this limitation and deals with the design of prediction 

models in the presence of both labeled and unlabeled data. In addition to labeled data, the STST approach also exploits 

unlabeled data to help improve soil temperature prediction performance. Due to the STST approach, the unlabeled data 

samples provide additional knowledge that is relevant for prediction, and they can successfully be used to improve the 

generalization ability of the learning system. 

 

- An important advantage of the STST approach is that it can be used with the combination of any supervised base learner 

such as SVR, KNNReg, and ETReg. The STST approach is entirely unaware of the regression method, in fact, it simply 

learns from the labeled and pseudo-labeled samples as if they were regular labeled samples.    

 

- Another advantage is that the STST approach can be applied to any soil data without any prior information about the 

given dataset. It does not make any specific knowledge and specific assumptions for the given data. 

 

- Soil temperature prediction at different depths is useful in agricultural management (Abyaneh et al. 2016; Huang et al. 

2020). However, the measured soil temperature data at various depths are rarely available for many locations. In many 

real-world agricultural applications, a huge amount of unlabeled data is available. The proposed STST approach 

addresses this inherent bottleneck by automatically allowing the model to integrate the available unlabeled data at 

various soil depths. Since the proposed STST approach covers multiple soil depths, it enables enormous agricultural 

applications, and so it expands the application of machine learning algorithms in the field of agriculture. 

 

Figure 2 expresses the main course of this study as a series of processes. The first part is the collection of soil data at different 

depths, meteorological data, and light intensity by using IoT devices and sensors or by pulling data from web pages. After data 

collection, if needed, missing data imputation can also be performed, otherwise, the machine learning process including self-

training takes part. In the self-training phase, a machine learning model is firstly built with the initial labeled data for the purpose 

of classifying unlabeled instances, and then, it is re-trained by adding its own estimations to the labeled data. After that, future 
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samples are assigned their predicted temperature values as an output. The final part is the reporting and presentation facility in 

order to adjust the findings in an interpretable format. 

 

 
 

Figure 2- The general framework of the proposed “Soil temperature prediction via self-training (STST)” model 

 

Algorithm 1 given below theoretically displays the pseudo-code of the training part of the proposed model. The aim is to 

obtain the soil temperature values (𝑌∗) of new instances in DTest at all depths. In the first part, there are two sets of instances: the 

labeled dataset (DL) and the unlabeled dataset (DU). The hidden patterns affecting the soil temperature can be detected by 

analyzing the labeled instances. Therefore, using the instances in 𝐷𝐿𝑑
, a classifier Cd is trained and a model that facilitates labeling 

other instances is obtained at the depth d. In this way, the pseudo-label (𝑦𝑖) of each instance xi in 𝐷𝑈𝑑
 is discovered. All the 

pseudo-labeled instances are then gathered together in Dd. Now, a new labeled training set DALL is ready by expanding the initially 

given 𝐷𝐿𝑑
 with the pseudo-labeled set Dd. The final step is to predict the temperature values (Yd) of new instances at the depth d 

by using the new classifier model Cd trained with DALL. The resulting output is the predicted soil temperature values of all depths 

as the collection of each Yd in the set Y*. 
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2.3. Machine learning methods  

 

The machine learning methods performed in the experiments are SVR, RF, KNNReg, ETReg, DTReg, and XGBoost. The 

parameters of all the applied methods were left as their default values in the sklearn library of Python.  

 

2.3.1. Support vector regression 

 

The main aim is to minimize the error by maximizing the margin around the separating hyperplane. The general formula can be 

written as an optimization problem as in Equation 1 where w is the normal vector to the bounding planes, C is the penalty 

associated with the instances which are either misclassified or violate the maximal margin, ϕ(X
i 
) is a function which maps data 

point Xi into a higher dimensional space, b shows the positions of bounding planes relative to the origin and ξ is a slack variable 

for soft margins defined for linearly non-separable cases. 

 

min
1

2
‖w‖2 + C ∑ ξi

n

i = 1

 

subject to Yi(wTϕ(X
i 
) + b) ≥ 1 - ξi, ξi ≥ 0 

 (1) 

 

In non-linear problems, the kernel functions, K(Xi, Xj) = ϕ(X
i 
) 

T
ϕ(X

j 
), are used to transform the data into a higher dimensional 

feature space to make it possible to perform the linear separation. Two kernel functions are generally used for these cases as 

polynomial kernel (poly kernel) or Gaussian radial basis function (RBF kernel). For two samples Xi and Xj, the poly kernel 

function and RBF kernel function can be written as in Equation 2 and Equation 3, respectively. 

 

K(Xi, Xj) = (aXi
T Xj + b)d    (2) 

  

K(Xi, Xj) = exp(-
‖Xi   - Xj‖2

2σ2
) (3) 

 

2.3.2. K-nearest neighbors regression 

 

It is one of the instance-based lazy learners where the method memorizes the training dataset instead of learning a discriminative 

function for predicting future samples. It compares a given test instance with training instances that are similar to it. The 

parameter k refers to the number of samples to be considered in the determination of the numeric outcome for a new sample. The 

Algorithm 1. Soil temperature prediction via self-training (STST)  

Inputs:  

  DL: the labeled dataset 𝐷𝐿 = {(𝑥𝑖 , 𝑦𝑖)}𝑖=1
𝑙 with l intances  

  DU: the unlabeled dataset 𝐷𝑈 = {𝑥𝑗}𝑗=𝑙+1
𝑙+𝑢  with u intances  

  DTest: test instances  

Outputs: 

   𝒀∗: predicted values 

foreach depth d do  

Cd= Train (𝑫𝑳𝒅
) 

foreach xi in 𝐷𝑈𝑑
        

          y = Cd (xi)  

         Dd.Add(xi,y)  

end foreach 

DALL = 𝐷𝐿𝑑
 ∪ Dd 

Cd = Train (DALL) 

  foreach xi in DTest        

           y = Cd (xi)  

           Yd = Yd ∪ y 

  end foreach 

𝑌∗ = 𝑌∗ ∪ Yd 

end foreach 

End Algorithm 
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nearest neighbors are calculated using one of the distance metrics such as Manhattan, Euclidean, Chebychev, Cosine, etc. In the 

experimental studies, Euclidean distance given in Equation 4, where two points are described as Xi = (𝑥i1, 𝑥i2, …, 𝑥im) for m 

features is used.  The outcome of the k nearest samples to a specific instance are averaged.  

 

Dist(X1, X2) = √∑ (𝑥1i − 𝑥2i)
2m

i=1  (4) 

 

2.3.3. Decision tree regression 

 

It is one of the supervised learning methods where the regression scenario is represented as a tree-based system in which each 

branch points out a possible outcome. The depth-first strategy in a top-down recursive and divide-and-conquer manner is applied 

to predict unknown target values for test cases. Each node of the tree refers to a specific attribute as the branches show their 

values. The leaves carry the results (the value of the class label).  

 

The construction of a decision tree is started with a root node. The determination of the initial node is based on the mutual 

information which gives the highest benefit for learning. For this purpose, information gain given in Equation 5, which is 

calculated for each attribute, is used that S is the instances of the parent node, A is an attribute to perform the split, SLeft and SRight 

are the samples found in the left and right child nodes, respectively, and I is the impurity measure. Information gain evaluates 

the gain of each feature in the context of a target variable. It is performed by taking the mutual information (i.e. the determination 

of the statistical dependence) between two random variables. I is the mean squared error (MSE) of the children nodes, which is 

given in Equation 8. 

 

InfoGain(S, A) = I(S)-(
|𝑆𝐿𝑒𝑓𝑡|

|𝑆|
𝐼(SLeft) +

|𝑆𝑅𝑖𝑔ℎ𝑡|

|𝑆|
𝐼(SRight)) (5) 

 

2.3.4. Random forest 

 

It is a meta estimator based on decision trees applied to many bootstrapped subsamples of a dataset. First of all, a specified 

number of decision tree regressors are built. A subset of features is randomly selected to be used as candidates at each split so 

that the constructed decision trees do not rely on the same set of features and high correlation among trees can be prevented. The 

bootstrapped instances also prevent the individual trees from overfitting. The numeric predictions of each estimator are averaged 

and assigned to the test sample as the final output. Equation 6 is used to make a prediction for a new sample x, where B is the 

number of bootstrapping, Ti is the bootstrapped tree constructed by a set of samples of size n, which is the total number of 

instances in the training data, and selecting m variables from all features at random for iteration i. The best split point among m 

variables is determined using the mean squared error as in Equation 8.  

 

𝑓𝐵(𝑥) =
1

𝐵
∑ 𝑇𝑖(𝑥)

𝐵

𝑖=1

 (6) 

 

2.3.5. Extremely randomized trees 

 

It is an ensemble of decision trees where cut-points are randomly determined while splitting nodes, on the other hand, the whole 

samples are used as given at the beginning instead of performing bootstrapping. The final output is assigned by averaging the 

results of ensemble iterations. Two important parameters are the number of randomly selected features and the minimum sample 

size for splitting a node.  

 

2.3.6. Extreme gradient boosting 

 

XGBoost is also one of the ensemble models of decision trees. It is based on gradient boosting in which errors are minimized by the 

gradient descent algorithm. By adding models on top of each other iteratively, the errors of the previous model are corrected by the 

next predictor, until the training data is accurately predicted or reproduced by the model. Instead of assigning different weights to the 

classifiers after every iteration, gradient boosting fits the new model to new residuals of the previous prediction and then minimizes the 

loss when adding the latest prediction. XGBoost uses this algorithm with an additional custom regularization term in the objective 

function. XGBoost uses a loss function to build trees by minimizing the value in Equation 7, where the first part represents the loss 

function calculating the pseudo residuals of the predicted (𝑦�̂�) and the real value (𝑦𝑖) of the ith instance in each leaf, the second part 

includes T as the number of leaves, 𝛾 as the penalty parameter used for pruning,  𝜆 as a regularization term, and w as the leaf weights. 

 

ℒ(𝜙) = ∑ ℓ(𝑦�̂�, 𝑦𝑖)

𝑖

+ ∑ Ω(𝑓𝑘)

𝑘

 

where Ω(𝑓𝑘) = 𝛾𝑇 +
1

2
𝜆‖𝑤‖2 

(7) 
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3. Results and Discussion 
 

From here onwards, the abbreviation of the self-training (ST) method followed by the abbreviation of the base classifier technique 

is used to refer to the related approach. For example, ST-SVR refers to the self-training method with the SVR base classifier.  

 

Three performance metrics (mean squared error (MSE) given in Equation 8, coefficient of determination (R2) given in 

Equation 9, and mean absolute percentage error (MAPE) given in Equation 10, where ST is the measured value of soil 

temperature, 𝑆�̃� is the predicted value of soil temperature, 𝑆𝑇̅̅̅̅  is the mean of the observed data, and n is the number of samples) 

were calculated to evaluate the usability of the proposed methodology and to select the best one in terms of the given criteria. 

The results show the outputs of ten-fold cross-validation. By considering the ratio of initially given training data as p%, the 

experimental results were obtained for all varying values of p as 5% to 85% with an increment of 5.  

 

MSE = 
1

𝑛
∑ (𝑆𝑇𝑖 − 𝑆𝑇�̃�)

2𝑛
𝑖=1  (8) 

  

R2 = 1− 
∑ (𝑆𝑇𝑖−𝑆𝑇�̃�)2𝑛

𝑖=1

∑ (𝑆𝑇𝑖−𝑆𝑇𝑖̅̅ ̅̅ )2𝑛
𝑖=1

  

 

(9) 

 

MAPE = 
1

𝑛
∑ |

𝑆𝑇𝑖−𝑆𝑇�̃�

𝑆𝑇𝑖
|𝑛

𝑖=1 ∗ 100 (10) 

  

Table 3 displays the MSE values of the methods under the self-training framework at the depth of 50 cm. Even though there 

are very few known cases of soil temperature, in the beginning, the constructed models achieved a remarkable performance by 

predicting too close to the real values for test cases. The self-training model led to increasing the amount of labeled data by 

pseudo-labeling the past training data by applying one of the regression methods described in Section 2.3. As a result, the 

constructed regression model had the advantage of discovering more patterns hidden in data due to more sets of instances with 

known outputs. 

  
Table 3- The comparison of the applied methods under self-training framework in terms of MSE values 

 

 

% 

 Methods 

ST-RF ST-SVR ST-KNNReg ST-ETReg ST-XGBoost ST-DTReg 

5 2.293 18.594 6.374 5.128 2.189 4.573 

10 1.466 16.584 4.020 3.444 1.279 3.041 

15 1.256 15.459 3.134 3.070 1.007 2.448 

20 1.197 14.537 2.779 2.607 0.934 2.234 

25 1.035 14.065 2.411 2.457 0.772 2.052 

30 0.891 13.553 2.331 2.189 0.736 1.702 

35 0.816 13.195 2.068 2.140 0.638 1.425 

40 0.747 12.920 1.991 2.047 0.582 1.402 

45 0.728 12.554 1.921 1.868 0.552 1.530 

50 0.670 12.259 1.728 1.687 0.522 1.219 

55 0.611 12.004 1.732 1.626 0.506 1.203 

60 0.567 11.730 1.672 1.593 0.482 1.197 

65 0.539 11.557 1.617 1.452 0.481 1.118 

70 0.490 11.310 1.559 1.255 0.419 0.960 

75 0.508 11.113 1.546 1.226 0.432 1.008 

80 0.467 10.889 1.489 1.160 0.386 1.019 

85 0.443 10.721 1.457 1.268 0.385 1.005 

 

Furthermore, the most noticeable thing is the reduction in error values as the percentage (p) value increases. It is because as 

the number of training instances real labels of which are known rises, the pseudo-labeled training data is less required to predict 

the outcome of new cases. More accurate estimations can be obtained as a result.  

 

The best results for all the ratio values were achieved when ST-XGBoost was performed. XGBoost is one of the ensemble 

learning methods which boosts high performance compared to single learners so it was expected that its results were good. ST-

RF is another ensemble learning method that followed ST-XGBoost in terms of low error values. The highest errors were 

obtained when ST-SVR was the learner. It can be inferred that ST-SVR required more labeled training data in order to find the 
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optimal hyperplane to make more accurate predictions. It could not manage to perform well when the value of p is small. The 

performance of ST-SVR may be improved by changing the kernel type or updating the parameters instead of using default values. 

 

Table 4 shows the MAPE values of the applied methods at the depth of 50 cm. As in Table 3, there is a tendency to decrease 

in the error values when the percentage of the initially given labeled training data is increased. ST-XGBoost performs the best 

(7.436% - 3.456%) especially for the p values between 5% and 60%. In addition to ST-XGBoost, ST-RF also achieves the 

predictions with the least errors (3.434% - 3.059%) for the p values of 65% to 85%. ST-DTReg is the leading one among the 

single learners with error rates of 9.706% - 4.001%. 

 
Table 4- The comparison of the applied methods under self-training framework in terms of MAPE values (%) 

 

 

% 

 Methods 

ST-RF ST-SVR ST-KNNReg ST-ETReg ST-XGBoost ST-DTReg 

5 7.544 26.706 13.921 10.899 7.436 9.706 

10 6.157 24.932 11.410 8.933 5.939 8.115 

15 5.522 24.107 9.821 8.110 5.334 7.120 

20 5.125 23.025 9.247 7.549 4.819 6.712 

25 4.746 22.592 8.440 7.226 4.395 6.134 

30 4.493 22.141 8.328 6.827 4.223 5.948 

35 4.267 21.688 7.621 6.555 4.082 5.445 

40 4.191 21.405 7.456 6.309 3.914 5.437 

45 3.990 20.906 7.156 5.973 3.722 5.177 

50 3.828 20.641 6.843 5.827 3.572 4.812 

55 3.717 20.229 6.820 5.741 3.581 4.843 

60 3.547 20.053 6.720 5.432 3.456 4.622 

65 3.434 19.842 6.468 5.188 3.486 4.352 

70 3.288 19.554 4.338 4.974 3.275 4.275 

75 3.258 19.295 6.266 4.759 3.271 4.243 

80 3.126 19.095 6.194 4.657 3.156 4.129 

85 3.059 18.890 6.077 4.665 3.109 4.001 

 

The comparisons of the methods according to R2 values are indicated in Figure 3 at the depth of 50 cm. R2 expresses the 

proportion of the variance for a dependent variable that is explained by the model’s inputs. In this study, it is the relationship 

between soil temperature and other independent variables such as soil moisture, air temperature, ultraviolet radiation, etc. as in 

the work of Shamshirband et al. (2020) and Tabari et al. (2011). According to the results, the general impression is that there is 

a steady increase as the value of p increases. The same condition as in MSE is valid for R2 that ST-SVR has the lowest coefficient 

of determination (0.331 to 0.614) while the best results are found in ST-XGBoost (0.921 to 0.987). Similarly, at the more sensitive 

depth of 10 cm, the best prediction accuracy was achieved by the ST-XGBoost algorithm. The best learner, ST-XGBoost, has 

the R2 values in the interval of 0.927 to 0.986, while the values of the ST-SVR method is in the interval of 0.321 to 0.606. 
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Figure 3- The comparison of the applied methods under self-training framework in terms of R2 values (ST-RF: the RF 

method combined with self-training, ST-SVR: the SVR method combined with self-training, ST-KNNRegressor:  the 

KNNRegressor method combined with self-training, ST-ETRegressor: the ETRegressor method combined with self-

training, ST-XGBoost: the XGBoost method combined with self-training, ST-DTRegressor: the DTRegressor method 

combined with self-training) 

 

Figure 4 displays the best-performed model, ST-XGBoost, in terms of the values of MSE at all depths. It is apparent that the 

model predicts soil temperature well at the depth of 50 cm while the values at the depth of 30 cm are generally estimated worse 

compared to others. Besides, as in Table 3, MSE values at depths of 10, 20, 30, and 40 cm are decreased when the size of the 

labeled training set is increased.  
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Figure 4- The results of MSE when the best predictor (ST-XGBoost) was performed at all soil depths 

 

Figure 5 demonstrates the predicted and the measured values of test samples of 10-fold cross-validation steps separately 

when ST-XGBoost is performed at the depth of 50 cm and p is 85% of the whole data. In each iteration, whole data including 

4500 samples are divided into training and test (90% of data as the training set and 10% of data as the test set) and this procedure 

is repeated ten times. In that way, the selection of the samples with different characteristics are increased instead of experimenting 

only with predefined test cases. The advantage of this is that, perhaps, the samples that are easy to predict in one iteration are 

collected in the test set, while in another iteration, the opposite (difficult samples for prediction) can be observed. Since the 

common result of all of them is obtained, a better inference is made than depending on a result of a single sample set. In this 

direction, Figure 5 shows clearly that the ST-XGBoost model obtains soil temperature values that are very close to the real 

measurements in each fold. 
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Figure 5- The predicted and the real values of the soil temperature when the ST-XGBoost model was applied at the 

depth of 50 cm and p is 85% 

 

In order to show the trend in the results as the soil depth changes, Table 5 demonstrates the MSE values of each applied 

method by taking their average for all p values from 5 to 85. Especially for ensemble learning methods, there is a general pattern 

that the error first increases for the soil depth of 10 to 30 and then a decreasing trend follows as the depth increases from 40 to 

50 cm. Their common characteristic is that they can better estimate the deepest soil temperature. On the contrary, there is a 

decreasing trend in most of the cases for single learners from shallow to deeper parts. ST-SVR and ST-DTReg manage to predict 

the best at the depth of 50 cm while ST-KNNReg performs well at the depth of 40 cm. The main inference for the proposed 
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model is that the more accuracy is generally obtained the deeper the soil. It is clear that the effect of the meteorological parameters 

on the soil temperature is greater in the regions close to the soil surface. While the soil in the shallow regions is affected more 

by external factors such as rainfall and wind, as the soil depth increases, a more stable environment is found in terms of the soil 

temperature modelling, and regression models, therefore, create better predictive models with less error. 

 
Table 5- The comparison of the mean values of the applied methods in terms of MSE values under self-training 

framework at different soil depths 

 

Methods  
Depth (cm) 

50 40 30 20 10 

ST-RF 0.866 0.927 0.958 0.941 0.931 

ST-ETReg 2.130 2.339 2.492 2.502 2.321 

ST-SVR 13.120 13.986 14.412 14.311 14.384 

ST-XGBoost 0.724 0.831 0.894 0.836 0.764 

ST-KNNReg 2.343 2.286 2.288 2.328 2.637 

ST-DTReg 1.714 1.848 1.957 1.941 1.920 

 

Table 6 shows the R2 results at different soil depths to compare our study with the recent studies in the literature. The values are the 

best R2 values obtained with the best parameter combinations in the mentioned studies and our results obtained on our dataset are the 

optimal R2 values of the best method, ST-XGBoost, at the specified depths. It is apparent that our proposed method generally 

outperforms the other models and it manages to estimate soil temperature accurately.   

 

Table 6- The accuracy of the results (R2) obtained in this study and the similar results obtained in the literature 

 

Ref Algorithm 
Depth  

(cm) 

R2 

Existing 

Method 

Proposed 

Method 

(STST) 

Alizamir et al. 2020a 

 Deep Echo State Network (Deep ESN) 

 Multilayer Perceptron Neural Network (MLPNN)  

 M5Prime Tree  

 Random Forest 

20 

10 

 

10 

10 

0.970 

0.890 

 

0.870 

0.900 

0.985 

0.986  

 

0.986  

0.986 

Li et al. 2020 

 Integrated Bidirectional Long Short-Term Memory 

Network (BiLSTM) 

 Long Short-Term Memory (LSTM) 

 Bidirectional Long Short-Term Memory Network 

(BiLSTM) 

 Deep Neural Network (DNN) 

 Random Forest (RF) 

 Support Vector Regression (SVR) 

 Linear Regression (LR) 

50 

0.920 

 

0.880 

0.860 

 

0.870 

0.860 

0.790 

0.420 

0.986 

Penghui et al. 2020 
 Adaptive Neuro-Fuzzy Inference System with 

Grasshopper Optimization Algorithm (ANFIS-mSG) 
10 0.977 0.986  

Guan et al. 2020 
 The Hybrid of Multilayer Perceptron by Invasive Weed 

Optimization (MLP-IWO) 
20 0.962 0.985 

Alizamir et al. 2020b 

 Extreme Learning Machine (ELM) 

 Artificial Neural Networks (ANN) 

 Classification and Regression Trees (CART) 

 Group Method of Data Handling (GMDH) 

 Multi-Linear Regression (MLR) 

10 

50 

10 

10 

50 

0.986 

0.984 

0.984 

0.988 

0.988 

0.986 

0.986 

0.986 

0.986 

0.986 

Huang et al. 2020  Multivariate Linear Regression 

10 

20 

40 

0.915 

0.889 

0.799 

0.986 

0.985 

0.986 

Behmanesh & Mehdizadeh 2017 

 Gene Expression Programming (GEP) 

 Artificial neural networks (ANN) 

 Multiple linear regression (MLR) 

 

10 

 

0.974 

0.980 

0.971 

 

0.986 

 

Abyaneh et al. 2016  Artificial Neural Networks (ANN) 

10 

20 

30 

50 

0.968 

0.926 

0.893 

0.872 

0.986  

0.985 

0.985 

0.986 

Ozturk et al. 2011  Artificial Neural Networks (ANN) 

10 

20 

50 

0.960 

0.981 

0.966 

0.986  

0.985 

0.986 
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The main findings of the study can be concluded as follows: 1) It was observed that “self-training” smartly provides many 

advantages for predicting soil temperature, including reducing cost and providing additional information present in unlabeled 

data. 2) The proposed STST approach has the potential to expand the application of machine learning in the agriculture sector, 

thanks to its advantages. 3) The ST-XGBoost method outperformed the other methods (ST-RF, ST-ETReg, ST-SVR, ST-

KNNReg, and ST-DTReg) in terms of prediction accuracy. 4) The prediction error changes according to the soil depth. 5) The 

accuracy of soil temperature prediction increased as the number of labeled data samples increased. 

 

4. Conclusions 
 

In this study, soil temperature at various soil depths was predicted using the proposed model, Soil Temperature prediction via 

Self-Training (STST). The past soil temperature & soil moisture data and meteorological data of Izmir, Turkey were considered 

in the interval of 01.09.2019 and 22.05.2020. The experimental results showed that self-training empowered the regression 

methods by presenting a more labeled pool of data for training a model for prediction. In this way, test samples were estimated 

more accurately using the information hidden in the expanded labeled instances instead of using few samples with known past 

values. Especially ensemble learning methods (ST-XGBoost and ST-RF) managed to capture the dynamics better behind the soil 

temperature prediction compared to other ones under the self-training framework. The best model, ST-XGBoost respectively 

obtained the results in the range of 0.385-2.888, 3.109%-8.740%, and 0.905-0.986 at depths of 5, 10, 20, 30, 40, and 50 cm for 

the performance metrics MSE, MAPE, and R2. In addition, the best predictions were generally made at the depth of 50 cm with 

the mean MSE values of 0.866, 2.130, 13.120, 1.724, and 1.714 for ST-RF, ST-ETReg, ST-SVR, ST-XGBoost, and ST-DTReg, 

respectively.  

 

This study contributes to the agricultural field in a way that plant growth can be handled more efficiently by taking the 

predicted soil temperature values into account. An automated irrigation system or cooling/heating system can be set up according 

to the variation in the temperature of the predicted time intervals. In the same manner, as future work, the proposed model may 

be customized and updated in order to estimate the soil moisture, which is another important parameter in plant production. 
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