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Abstract
Pearson’s differential equation is used for fitting a distribution to a data set. The differ-
ential equation has some alternative moment-based estimators (depending on the trans-
formation to data). The estimator used when no transformation is made on the data set
has 4 elements, and the estimators that require any transformation have 3 elements. We
describe all elements of the estimators by corresponding vectors. One of the factors affect-
ing the preference of an estimator is robustness. We use covariance matrix, bias, relative
efficiency and influence function as our robustness criteria. Our aim is to compare the
performance of the estimators of the differential equation for some specific distributions
(namely Type I, Type IV, Type VI and Type III). 10,000 samples with specific sizes were
selected with replacement. Also, we evaluated the performance of the estimators over
real-life data. Considering the results, there is no best estimator in all criteria. Depending
on the criterion to be based, the estimator to be preferred varies.
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1. Introduction
Data based on observation are generally intended to be expressed by a probability

function. One of the methods used for this purpose is the probability density functions
(pdf) obtained from the Pearson differential equation whose parameters are estimated by
the method of moments. The distributions which are obtained from the parameters of the
differential equation are called the Pearson Family of Distributions. Within this family of
distributions, there are 13 distributions with various skewness and kurtosis. Type I, Type
IV and Type VI distributions are called the main types and there are also transition types
(e.g. Type III).
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The literature about the Pearson distributions can be divided into two groups: while
the first group deals with the system itself [4,24,37], the second one reviews some specific
distributions in the system [5,7, 42].

The original differential equation defined by Pearson has a first-degree polynomial in
the numerator and a second-order polynomial in the denominator. However, this structure
of the differential equation can be generalized and the system can be modified. Thus, new
distributions with different skewness and kurtosis can be derived [10, 21, 34, 38]. There
are also alternative methods to fit a distribution in the Pearson system with the original
differential equation. Andreev et al. [1] proposed D and λ parameters for distribution
selection in the system. Their selection criteria based on the parameters of the original
differential equation. Cohen [8] proposed a method for fitting a distribution in the Pear-
son system for truncated samples. Parrish [30] used loss function approach instead of
method of moments to fit a distribution in the Pearson system. Apart from the estimators
mentioned above, alternative estimators can be obtained by making some transformations
(e.g. location and/or scale) on the data set. We will discuss these alternative estimators
throughout this study.

The need for asymmetric and heavy-tailed distributions in statistical modeling increased
interest in the Pearson Distribution Family. Type IV distribution in this system is widely
used especially for financial data (see [25] and [26]). Besides, Type IV distribution is used
in the field of astrophysics (see [43]). Type III distribution mostly was used to model the
flood of the rivers (see [3, 12, 23, 36]). Statistical quality control [35], optimization [22],
and reliability analysis [28] are some other fields the Pearson system is used.

Type III distribution has a great interest in the literature. Arora and Singh [2] com-
pared direct moments, mixed moments, maximum likelihood method, and entropy method
in terms of robustness properties for log-Pearson Type III distribution. They used bias,
standard deviation and root mean square error over the large and small sample sizes as
comparison criteria. By the results, it was concluded that the method of direct moments
and the mixed moments were more robust than the others. Naghavi et al. [27] compared
the direct moments, logarithmic moments and mixed moments methods used in param-
eter estimation of the Type III distribution. They selected root mean square error and
mean absolute deviation as the performance criteria and they investigated the most robust
estimator among them. Regarding the results, any estimator is not definitely better than
the others. Depending on the skewness of the data set and sample size, alternatives are
preferred. Koutrouvelis and Canavos [19] compared the method of moments, the simpli-
fied conditional method of moments and the mixed method of moments for the Pearson
Type III distribution, by Monte Carlo simulation with different skewness values and small
and large sample sizes derived from this distribution. The robustness properties of the
estimators were compared over the bias and normalized root mean square error.

The robustness properties of the Pearson system itself have not been examined in
the literature. However, there are some robust statistics-related studies. Büyükkör and
Şehirlioğlu [6] evaluated robustness properties of Type VI distribution via influence func-
tion. Sun et al. [39] developed robust clustering approach by using Type VII distributions.
Posten [31] examined robustness of the one sample t-test over the Pearson system.

In the previous studies, the characteristics of the estimators of some distributions in
the Pearson family of distributions (such as Type III, Type VII) have been discussed.
However, there is no study in the literature deals with the estimators of the differential
equation as a vector.

The parameter estimates of the Pearson differential equation are based on the method
of moments. Four different estimators can be defined by location and/or scale transfor-
mation of the data set. These four estimators are: the estimator does not require any
transformation on the data set (θx), the estimator obtained by setting the mean to zero
(θy) (location), the estimator obtained by setting the mode to zero (θz) (location) and
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obtained by standardizing (location and scale) the data set (θt). The aim of this study is
to investigate the robustness measurements of these estimators. In accordance with this
purpose, we will obtain influence functions and covariance matrices for the estimators and
make performance comparisons among them for different sample sizes over some types of
Pearson distributions. Since the parameter estimators of the Pearson differential equation
are based on the method of moments, they are very sensitive to outliers. Therefore, it
is important to determine which of the alternative estimators are robust for some spe-
cific cases. The effects of location/scale transformations on estimators of the differential
equations will be evaluated on certain measures. The transformations reduce the number
of parameters to be estimated. It is expected that the transformations will yield better
results under the specified criteria. We will discuss the validity of the expectations with
regard to the simulation study.

The following parts are as follows: Section 2 describes the Pearson Family of distri-
butions, the related differential equation, and some distributions (namely Type I, Type
VI, Type IV, and Type III) obtained from this differential equation. Section 3 introduces
briefly the robustness criteria by which the estimators examined throughout this study.
Section 4, evaluates the performances of the specified distributions under the determined
criteria for large and small samples. Section 5 concludes.

2. Pearson family of distributions
To fit a probability distribution to a data set, the Pearson family of distributions might

be useful. The distributions of this family are derived from a differential equation.The
process starts with the calculation of moments of a data set.Via the moments, parameters
of the differential equation can be determined. After that stage, proper distribution can
be found in the family. Details of this process are discussed in the following subsections.

2.1. Differential equation
The probability density functions within the distribution system defined by Karl Pearson

are derived from the solution of the following differential equation [18]
df

dx
= (x− αx) f
ϕ0 + ϕ1x+ ϕ2x2 (2.1)

The shape of distribution depends on the parameters (αx, ϕ0, ϕ1 and ϕ2) of the differential
equation. General solution for all distributions in the system can be obtained by the
recursive moment equation after some integral operations as follows [18]:

nϕ0µ
′
n−1 + [(n+ 1)ϕ1 − αx]µ′

n + [(n+ 2)ϕ2 + 1]µ′
n+1 = 0

where µ′
i is the i-th crude moment. If the equation is solved for n = 0, 1, 2, 3 the parameters

are obtained in terms of moments as follows:

αx = −−12µ′
4µ

′3
1 + 20µ′

2µ
′
3µ

′
1

2 − 9µ′
1µ

′
2

3 + 13µ′
1µ

′
2µ

′
4 − 8µ′

1µ
′
3

2 − 3µ′
2

2µ′
3 − µ′

3µ
′
4

A

ϕ0 = −−3µ′
2µ

′2
1µ

′
4 + 4µ′

1
2µ′

3
2 − µ′

2
2µ′

3µ
′
1 − µ′

1µ
′
3µ

′
4 + 4µ′

2
2µ′

4 − 3µ′
2µ

′
3

2

A

ϕ1 = −−6µ′
4µ

′3
1 + 8µ′

2µ
′
3µ

′
1

2 − 3µ′
1µ

′
2

3 + 7µ′
1µ

′
2µ

′
4 − 2µ′

1µ
′
3

2 − 3µ′
2

2µ′
3 − µ′

3µ
′
4

A

ϕ2 = −−4µ′3
1µ

′
3 − 3µ′

1
2µ′

2
2 + 2µ′

1
2µ′

4 − 10µ′
1µ

′
2µ

′
3 + 6µ′

2
3 − 2µ′

2µ
′
4 + 3µ′

3
2

A
where

A = 8µ′
1

3
µ′

3 − 6µ′
1

2
µ′

2
2 + 10µ′

1
2
µ′

4 − 32µ′
1µ

′
2µ

′
3 + 18µ′

2
3 − 10µ′

2µ
′
4 + 12µ′

3
2
.
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The distribution of the random variable X can be defined as X ∼ P (µ′
1, µ

′
2, µ

′
3, µ

′
4).

For a transformation Y = X −µ, where µ is the mean of distribution X, the new random
variable can be expressed as Y ∼ P (0, µ2, µ3, µ4) where µi is the i-th central moment.
The transformation sets the mean of the new variable to the origin. The new estimators of
the differential equation can be obtained as setting µ′

1 = 0 in the previous step as follows

αy = φ1 = −µ3
(
3µ2

2 + µ4
)

B

φ0 = −µ2
(
4µ2µ4 − 3µ2

3
)

B

φ2 = −−6µ3
2 + 2µ2µ4 − 3µ2

3
B

where
B = −18µ3

2 + 10µ2µ4 − 12µ2
3.

Similarly, for the random variable Y , a new transformation can be defined as Z = Y −αy

where αy is the mode of Y . After the location transformation, the new random variable
Z’s mode is set to zero [18]. The new differential equation to be obtained by setting the
mode to zero is as follows:

df

dz
= zf

λ0 + λ1z + λ2z2 (2.2)

This differential equation system has 3 parameters to be estimated. Parameter estimators
can be expressed by the following equations:

λ0 = −−4µ′
3µ

′
1

2 + 3µ′
1µ

′
2

2 + µ′
3µ

′
2

2C

λ1 = −µ′
1 (−µ′

2µ
′
1 + µ′

3)
C

λ2 = −−4µ′
1

3 − 5µ′
1µ

′
2 + µ′

3
2C

where
C = 4µ′

1
3 − 6µ′

2µ
′
1 + 2µ′

3.

Equations of the new parameters in terms of the original differential equation parameters
are given below:

λ0 = ϕ0 + α2
x (1 + ϕ2)

λ1 = αx (1 + 2ϕ2)

λ2 = ϕ2

Another available transformation is to standardizing the random variable. The new ran-
dom variable can be defined as T = (X − µ)/σ where µ is the mean and σ is the standart
deviation of X. The new random variable T can be expressed as T ∼ P (0, 1, µ′

3, µ
′
4).

The new estimators of the differantial equation now became:

αt = ψ1 = −µ3 (3 + µ4)
D

ψ0 = −4µ4 − 3µ2
3

D

ψ2 = −−6 + 2µ4 − 3µ2
3

D
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where
D = −18 + 10µ4 − 12µ2

3.

All of the transformations on the random variable, reduce the number of parameters to
be estimated from 4 to 3.

2.2. Main types
The Pearson distribution system is based on the value of the roots

r1 =
−ϕ1 +

√
ϕ2

1 − 4ϕ0ϕ2

2ϕ2

and

r2 =
−ϕ1 −

√
ϕ2

1 − 4ϕ0ϕ2

2ϕ2

of the equation ϕ0 + ϕ1x + ϕ2x
2 = 0. If the roots are in r2 < 0 < r1 form and opposite

signed, the distribution of X is Type I, and if the roots are in r1 < r2 < 0 or 0 < r1 < r2
form with identical sign, the distribution of X is Type VI, and if the roots are complex,
the distribution of X is Type IV.

The pdf of Type I distribution, where the random variable is defined on the range
r2 < x < r1 is:

f (x) = K(r1 − x)m1(x+ r2)m2

where K is the constant of integration and is obtained as follows [11]:

K = 1
Beta (m1 + 1,m2 + 1) (r1 − r2)m1+m2+1

The pdf of Type VI distribution, where the random variable is defined on the range
−r2 < x < ∞ is:

f (x) = K(r1 + x)m1(r2 + x)m2

The constant of integration K can be calculated as follows [11]:

K = 1
Beta (−m1 −m2 − 1,m1 + 1) (r2 − r1)m1+m2+1

The pdf of Type IV distribution, where the random variable is defined on the range
−∞ < x < ∞ is:

f (x) = K
[
(x+ r)2 + s2

]m
ev. arctan θ

The constant of integration K can be obtained by x+ r = s tan θ transformation [11].

K = s−2m−1

exp
(

vπ
2
) π/2∫

−π/2
(cos θ)−2m−2 exp (−vθ) dθ

Pearson family of distributions consists of three main types. Type III distribution is a
transition type of this system and it can be defined by the case that ϕ2 = 0 in (2.1) . The
pdf of Type III is

f (x) = Ke(x+r)/a(x+ r)m, − r < x < ∞
where r is the root of the denominator in (2.1) (while ϕ2 = 0), m = r

αx
− 1 and K =

1
(−αx)m+1Γ(m+1) . Other transition types are out of the scope of this study.
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3. Robustness measures
The aim of the robust approach to classical modeling and data analysis is to generate

reliable parameter estimates and methods to generate the corresponding hypothesis tests
and confidence intervals, not only when the data fits exactly to any given distribution,
but also when they fit approximately a distribution [14,16] . Robust methods also aim to
provide the best fit for the majority of data. If there are no outliers in the data set, robust
methods give almost the same results as classical methods. As a result of the goodness
of fit with the majority of the data set, robust methods are very reliable in determining
outliers [14]. For these reasons, alternative estimators of the differential equation will be
evaluated on some robustness measures.

Some of the tools used to determine the robustness characteristics of the estimators are
introduced below.

Definition 3.1. Bias

Bias is defined as the expected value of the difference between an estimator and a
parameter [32].

Bias = E
(
θ̂n − θ

)
For a vector of estimators, bias can be calculated by Euclidean distance.

Definition 3.2. Asymptotic Relative Efficiency

For estimator vectors θ̂1 and θ̂2 on Rk, asymptotic relative efficiency (ARE) can be
defined as follows [33]

ARE
(
θ̂2, θ̂1

)
=
( |
∑

1|
|
∑

2|

)1/k

where
∑

i is the determinant of the corresponding covariance matrix. For an estimator
on R, it can be calculated as the ratio between variances.

Definition 3.3. Influence Function

Let T be a real valued functional on a subset of all probability measures of the real
number space R and let F be a probability measure on R. The probability measure ∆x

for any point x ∈ R has point mass 1. The joint distribution of F and ∆x for 0 < ε < 1
can be expressed as (1 − ε)F + ε∆x. Influence function for the estimator T under F is
[15]

IF (T, F ;x) = lim
ε↓0

{T [(1 − ε)F + ε∆x] − T (F )}
/
ε (3.1)

For any W = (1 − ε)F + ε∆x distribution, where 0 ≤ ε ≤ 1 let µ′ (W ) be the mean of the
contaminated distribution. Then the following equation holds for crude moments:

µ′
r (W ) = (1 − ε)µ′

r (F ) + εxr (3.2)
And for central moments,

µs (W ) = (1 − ε)
∞∫

−∞

[
t− µ′ (W )

]s
dF (t) + ε

[
x− µ′ (W )

]s (3.3)

To substitute (3.2) into (3.3),the expression becomes [13]

µs (W ) = (1 − ε)
∞∫

−∞
[t− µ′ (F )]sdF (t) − ε[x− µ′ (F )]sdF (t)

+ ε{(1 − ε) [x− µ′ (F )]}s
(3.4)

By the general structure of the central moment of the contaminated distribution given
by (3.4), the second central moment of the contaminated distribution can be found as
follows:
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µ2 (W ) = (1 − ε)
{
µ2 (F ) + ε2[x− µ′ (F )

]2}+ ε(1 − ε)2[x− µ′ (F )
]2

By the general structure of the crude moment of the contaminated distribution given by
(3.2), multiplicative moment structures such as µ′

sµ
′
r and µ′

sµ
′
rµ

′
u can be found respectively

as follows [41]:
µ′

s (W )µ′
r (W ) = (1 − ε)2µ′

s (F )µ′
r (F ) + ε (1 − ε)µ′

s (F )xr

+ ε (1 − ε)µ′
r (F )xs + ε2xsxr

(3.5)

µ′
s (W )µ′

r (W )µ′
u (W ) = (1 − ε)3µ′

s (F )µ′
r (F )µ′

u (F )

+ ε(1 − ε)2 [µ′
s (F )µ′

u (F )xr + µ′
r (F )µ′

u (F )xs + µ′
s (F )µ′

r (F )xu]
+ ε2 (1 − ε)

[
µ′

u (F )xr+s + µ′
s (F )xr+u + µ′

r (F )xs+u
]

+ ε3xs+r+u

(3.6)

A similar approach can be used for central moments.

Definition 3.4. Covariance Matrices and Influence Functions of the Estimators

When investigating the variance-covariance of linear functions of moment estimators,
the approaches defined by [9] and [18] can be used. However, if the function of interest
is a nonlinear function of moment estimators (e.g. correlation coefficients, skewness and
kurtosis measures), the specified approaches cannot be used. The approach proposed
by [9] for the variance-covariance structures of functions which contains ratios of certain
moments is explained by the following formulas. Regarding Cramer’s theorem, a function
of two central moment estimators mv and mρ is expressed by H (mv,mρ) [9]. Expected
value and variance of the random variable H (mv,mρ) is as follows, repectively:

E (H) = H0 +O

( 1
n

)

var (H) =
n∑

i=1
var (mi)

(
∂H

∂mi

)2
+ 2

∑∑
i<j

cov (mi,mj)
(
∂H

∂mi

)(
∂H

∂mj

)
+O

( 1
n3/2

)
where H0 is the H functions value at points mv = µv and mρ = µρ [9] .

For a measure taking into account the variance-covariance of the estimators such as
ARE, the covariance between two different H functions must be obtained. For this pur-
pose, the following corollary was obtained by using Cramer’s H theorem.

Corollary 3.5. Covariance between two H functions

Let H1 and H2 be functions of mv and mρ. The covariance between these two functions
is [41]

Cov (H1,H2) =
n∑

i=1
var (mi)

(
∂H1
∂mi

)(
∂H2
∂mi

)
+ 2

∑∑
i<j

cov (mi,mj)
(
∂H1
∂mi

)(
∂H2
∂mj

)
This corollary can be extended to the situations for H function has 3 or more argumenets.
Parameter estimators of the Pearson differential equation will change depending on the
transformation of the random variable that was mentioned in Section 2.1. Alternative
estimators can be expressed as:

θx =


αx

φ0
φ1
φ2

 , θy =

 αy

ϕ0
ϕ2

 , θz =

 λ0
λ1
λ2

 , and θt =

 αt

ψ0
ψ2


Parameter estimators of the differential equation are nonlinear functions of sample mo-
ments. For instance, θx consist of αx = f (µ′

1, µ
′
2, µ

′
3, µ

′
4), ϕi = f (µ′

1, µ
′
2, µ

′
3, µ

′
4) for

i = 0, 1, 2. Since these functions depend on moments, they can also be expressed as a
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function of the random variable. The influence function on (3.1) can be extended to esti-
mator vectors. From this perspective, the influence functions of the estimator vectors are
in the form of [17]

IF (θ, F ;x) = lim
ε↓0

θ (W ) − θ (F )
ε

The influence function of θx is:

IF (θx, F ;x) = d
dεθx (W ) |ε=0

=


IF (αx, F ;x)
IF (ϕ0, F ;x)
IF (ϕ1, F ;x)
IF (ϕ2, F ;x)


First influence function of this vector can be obtained by using (3.5) and (3.6) as follows:

IF (αx, F ;x) = −2αx + ξ1(µ) + xξ2(µ) + x2ξ3(µ) + x3ξ4(µ) + x4ξ5(µ)
A

− αx
[
ξ6(µ) + xξ7(µ) + x2ξ8(µ) + x3ξ9(µ)

]
A

(3.7)

where

ξ1(µ) = 13µ′
1µ

′
2µ

′
4 − 24µ′3

1 µ
′
4 − 3µ′2

2 µ
′
3 − 8µ′

1µ
′2
3 − 18µ′

1µ
′3
2 + 40µ′2

1 µ
′
2µ

′
3

ξ2(µ) = 8µ′3
3 + 9µ′3

2 − 13µ′
2µ

′
4 + 36µ′2

1 µ
′
4 − 40µ′

1µ
′
2µ

′
3

ξ3(µ) = 6µ′
2µ

′
3 − 13µ′

1µ
′
4 + 27µ′

1µ
′2
2 − 20µ2

1µ
′
3

ξ4(µ) = 3µ′2
2 + µ′

4 + 16µ′
1µ

′
3 − 20µ′2

1 µ
′
2

ξ5(µ) = 12µ′3
1 + µ′

3 − 13µ′
1µ

′
2

ξ6(µ) = 20µ′
2µ

′
4 − 54µ′

2 − 24µ′2
3 − 32µ3

1µ
′
3 − 10µ′2

1 µ
′
4 + 96µ′

1µ
′
2µ

′
3 + 24µ′2

1 µ
′
2 + 24µ′2

1 µ
′
3

ξ7(µ) = 20µ′
1µ

′
4 − 32µ′

2µ
′
3 − 12µ′

1

ξ8(µ) = 54µ′2
2 − 10µ′

4 − 32µ′
1µ

′
3 − 12µ′2

1 µ
′
2

ξ9(µ) = 8µ′3
1 + 24µ′

3 − 32µ′
1µ

′
2

and A is defined in Section 2.1. Similar approaches can be used for other components
and other estimators (see AppendixC).

The covariance matrix of the estimator θx is:

∑
x

=


V ar (αx) Cov (αx, ϕ0) Cov (αx, ϕ1) Cov (αx, ϕ2)

Cov (αx, ϕ0) V ar (ϕ0) Cov (ϕ0, ϕ1) Cov (ϕ0, ϕ2)
Cov (αx, ϕ1) Cov (ϕ0, ϕ1) V ar (ϕ1) Cov (ϕ1, ϕ2)
Cov (αx, ϕ2) Cov (ϕ0, ϕ2) Cov (ϕ1, ϕ2) V ar (ϕ2)


Diagonal elements of this matrix is obtained by Cramers H theorem and off-diagonals
by recalling (see Appendix B). With a similar approach, covariance matrices of other
estimators can be obtained.

4. Applications
We will evaluate the performances of the estimators by both a simulation study and a

real-life data example in this section.
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4.1. Simulation study
We use pearsrnd code in Matlab to create 4 different distributions (Type I, Type IV

Type VI, and Type III) with 1,000 observations in order to compare the performances of
the alternative estimators on the corresponding distributions. All this distributions can
be Bell-shaped. The probability density functions of these distributions and the range of
random variables are as follows

Type I:

f (x) = 5.2193 × 10−27(22.9504 − x)17.6493(x− 5.8799)1.4153

−5.8799 < x < 22.9504

Type IV:

f (x) = 473.2603
[
(x+ 4.2122)2 + 2.18152

]−5.8076
exp

[
7.3356. arctan

(
x+ 4.2122

2.1815

)]

−∞ < x < ∞

Type VI:

f (x) = 8.5257 × 1067(x− 22.3818)−53.9867(x− 4.7463)5.0569

−4.7463 < x < ∞

Type III:

f (x) = 0.394e(x+4.6713)/0.7932(x+ 4.7463)4.8892

−4.6713 < x < ∞

To compare the big-small sample performances of these distributions, 10,000 samples
were selected from N = 1, 000 sized populations with replacement for n = 50, n = 100,
n = 200, n = 400 and n = 800 sample sizes. These sample sizes can be seen in the
literature [23]. Thus, we have data matrices with dimensions of 50×10, 000, 100×10, 000,
200 × 10, 000, 400 × 10, 000 and 800 × 10, 000. For a population of size 1000, the required
sample size is 278 to represent the corresponding population [20].

Figure 1. Locations of sample distributions on Craig chart for Type I distribution
(n = 50).
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Figure 2. Locations of sample distributions on Craig chart for Type I distribution
(n = 800).

Another way to choose a distribution suitable for the data set from the Pearson system
is the Craig chart. The axes consist of δ and β1 where β1 = µ2

3
µ3

2
, β2 = µ4

µ2
2
,and δ = 2β2−3β1−6

β2+3
[40]. For the estimator θy samples derived from Type I can be seen on Craigs chart in
Figure 1. Some of the sample distributions are located in the Type VI area for n = 50
while for n = 800 most of them are in the Type I area. Similar results can be seen for
other type of distributions.

The influence functions of all four estimators are unlimited (see Figure 3). The func-
tional structures of the influence functions of all estimators except ϕ0 and λ0 are not
affected by the distribution. As the type of distribution changes, the effect of an observa-
tion on the estimator changes. For all estimators, the effect of an observation is the lowest
in the Type I distribution, while is the highest in the Type IV distribution.

The variance of all components of all estimators are the smallest in the Type IV dis-
tribution. The lowest variability among the components is seen in the coefficient of the
quadratic variable (ϕ̂2,φ̂2 ,λ̂2 and ψ̂2) of all the estimators for all distributions and all
sample sizes (see Table 3-6). There is an almost reciprocal linear relationship between the
variance and the number of observations. The relationship can be expressed as

V ark×n
∼=
V arn

k

for k = 1, 2, 4, 8, 16 and n = 50 (see Appendix D). We use the indice k to adress our
specific sample sizes. Correlations between the components of the parameter estimation
vectors θx,θy,θz and θt are obtained by using the corollary in Section 2. The highest
degree of linear relationship between the components can be seen between α̂x for θx,α̂y

and φ̂0 for θy, α̂t and ψ̂2 for θt (see Table 7-10). The sample size does not affect the
correlation coefficient between these components. Another way to examine the linear
relationship between the components of the estimators is to express them into a correlation
matrix. The determinant of the correlation matrix reveals the dependency between the
components. As the correlations are independent of the sample sizes, determinants of
the correlation matrices are also independent of the sample sizes. Determinants of the
correlation matrices for n = 800 is given in Table 1.
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(a) (c)

(b) (d)

Figure 3. Influence Function of αx(a), ϕ0( b), ϕ1(c) and ϕ2(c) for Type I distribution.

Table 1. Determinants of the Correlation Matrices of the Estimators

Type I Type VI Type IV Type III

det
∣∣∣Pθ̂x

∣∣∣ 0.0045 0.0007 0.0026 0.0473

det
∣∣∣Pθ̂y

∣∣∣ 0.0726 0.0856 0.2250 0.2963

det
∣∣∣Pθ̂z

∣∣∣ 0.0722 0.0663 0.1094 0.2933

det
∣∣∣Pθ̂t

∣∣∣ 0.0720 0.0853 0.2279 0.2959

The mean vectors obtained from 10,000 samples from the given sample sizes of four esti-
mators, and norms of the difference vectors defining the difference of these estimates from
the population parameters are given in Table 11, Table 12, Table 13 and Table 14 (Appen-
dix D), respectively. The norm of the bias vector is calculated by the Euclidean distance.
With reference to the results obtained from the Type I and Type III distributions, the
mean vectors of θt in all sample sizes, is closer to the parameter vector. For Type VI and
Type IV distributions, θz is closer to population parameters. Generally, a negative linear
relationship is valid between the biases and the sample sizes. In Table 15 (Appendix D),
the asymptotic relative efficiencies of alternative estimators were compared. Some obvious
results are as follows: The dispersion of θy is less in all distributions and in all sample
sizes compared to θx. The dispersion of θz is smaller than θx in all distributions and in
all sample sizes.

4.2. Real-life data
Our sample is the daily brent oil returns between 31 December 2009 and 25 February

2015 [29]. The data consist of 2215 observations.
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Figure 4. Histogram of the sample data.

Histogram of our sample data is given by Figure 4. Since the distribution of sample
data seems to be unbounded on both ends, it might be fitted by Type IV distribution.
Defining a suitable probability density function has great importance for any kind of
posterior analysis. Our analysis will reveal the best available option among the alternative
estimators for this particular instance.

Crude moments of the data are follows:

µ′
1 = 8.8650 × 10−5, µ′

2 = 3.7055 × 10−4, µ′
3 = −2.1047 × 10−7, µ′

4 = 7.9072 × 10−7.

Differential equation parameters are follows:

αx = 2.7324 × 10−4, ϕ0 = −2.1568 × 10−4, ϕ1 = 2.0930 × 10−4, ϕ2 = −0.1393

Since the roots of the denominator of the (2.1) are complex, the data fits the Type IV
distribution. Corresponding pdf can be expressed as:

f(x) = 1.9863 × 10−9
[
(x− 7.5110 × 10−4)2 + 0.03932

]−3.5887

× exp
[
−0.0871 × arctan

(
x− 7.5110 × 10−4

0.0393

)]
Determinants of the estimators’ correlation matrices are given in Table 2. Similar to the
simulation results, determinant of the correlation matrix of θy and θt is greater than
θx and θz. However, determinant θz is the minimum among others for the Type IV
distribution.

Table 2. Determinants of the Correlation Matrices of the Estimators for Type
IV Distribution

det
∣∣∣Pθ̂x

∣∣∣ det
∣∣∣Pθ̂y

∣∣∣ det
∣∣∣Pθ̂z

∣∣∣ det
∣∣∣Pθ̂t

∣∣∣
0.1684 0.7203 0.00002 0.7214

Influence funcitons of the estimators are given in Appendix E. Coherent to the simula-
tion results, all of the influence functions are unbounded. Therefore, there is no difference
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among the influence functions. Since det
∣∣∣Pθ̂t

∣∣∣ is the maximum, the best alternative is θt

for the Type IV distribution.

5. Discussion and conclusion
While the estimators obtained for any Pearson distribution parameters were handled

individually in previous studies, the differential equation parameter estimators were han-
dled both individually and as a vector, and evaluations were performed on these estimator
vectors in this study.

A robust estimator is expected to have a bounded influence function. All the moment
estimators are known to have unbounded influence functions. We have proved that our
moment estimators also have unbounded influence functions as expected. There is no
difference among these estimators in terms of influence functions.

The H-theorem, and the corollary obtained from this theorem were used to obtain
the variances and covariances of the estimators. When the variances obtained from the
H-theorem are examined, it is seen that they are negatively linearly correlated with the
sample size. Components of θt has the lowest variance among others.

Similar analysis were made for correlations between components. It is seen that for
all estimators, the correlations between these components are independent of the sample
sizes. The degree of linear relationship between components can vary depending on the
distribution. The most favorable situation for the correlation between parameter that
defines mode (αx,αy,αt) and other location parameters r1 and r2 which are functions of
other parameters (i.e ϕi, φi, ψi for i = 0, 1, 2) is when it is lowest. These two location
measurements are desired to be as independent of each other as possible. This can be seen
on θy and θt among all the estimators. Another approach is to considering the estimators
as a vector. In this approach, linear relationship can be expressed by correlation matrix.
The greater the determinant of the correlation matrix obtained by the corollary, the weaker
the linear relationship between the variables. Our real-life data example revealed that for
Type IV distribution, θt is the best available estimator This result is consistent with the
results obtained for the individual components. It should be noted that when choosing
among the estimators, it is desired that the one with a higher determinant also has low
variance value at the same time.

Biases of the estimators were examined by the norm of the difference vector. It is seen
that location and scale transformation have a positive effect on both biases and ARE. For
all estimators, as the sample size increases in all distributions, the norm of the deviation
vector decreases as expected.

As a result of our analyzes, the following statements for the specific distributions are
true: For Type I distribution, considering the determinants of the correlation matrices,
all estimators except θx recommended. Regarding ARE between estimators, however, θt

is the best alternative for Type I. θy and θt are the best alternatives with respect to
determinants of the correlation matrices for Type VI. Considering ARE between these
two, θy preferred.Similar evaluations can be made for the other two distributions. In
conclusion, θy and θz can be recommended for Type IV and Type III, respectively.

The number of inflection points is of great importance for Pearson system. If the inflec-
tion points are more than two, the distribution cannot be fitted by Pearson distribution
family. This problem usually occurs for small sample sizes (especially for n ≤ 50). This
problem can be overcome by increasing the degree of the polynomial in the denominator
of the differential equation and obtaining new distributions. The disadvantage of this
approach is that the 5th and 6th order moments must be used. It should be noted that
the standard errors of higher-order moments are bigger.

The sensitivity analysis is one of the methods that can be used for a robustness mea-
sure. In future studies, how sensitive the estimators are to an additional observation can
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be examined. Another analysis that can be made is to measure the distance between
the population pdf and the sample pdfs. There are some available metrics such as Bhat-
tacharya distance to calculate the distance between two pdfs. But the main limitation of
this metric is that the two pdf should be in the same domain. For small sample sizes, the
distribution of the data set tends to change its range. To overcome this problem, based on
the marginal distributions of the parameters, bivariate distributions of these parameters
can be obtained. Thus, a joint confidence region can be obtained with an ellipse with axes
β1 and δ, or β1 and β2.
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Appendix A. Proof of the corollary
The H function defined by Cramer can be expressed by bivariate Taylor expansion. By

this approach the H function can be expressed as:

H (mv,mρ) = H (µv, µρ) + ∂H(mv ,mρ)
∂µv

(mv − µv) + ∂H(mv ,mρ)
∂µρ

(mρ − µρ)

+ 1
2!


∂2H(mv ,mρ)

∂µv
2 (mv − µv)2

+2∂H(mv ,mρ)
∂µv

∂H(mv ,mρ)
∂µρ

(mv − µv) (mρ − µρ)
+∂2H(mv ,mρ)

∂µρ
2 (mρ − µρ)2

+ · · ·

at points mv = µv and mρ = µρ. After taking expected value and variance of both
sides, expected value and variance of H function can be obtained. By this information,
covariance between two H functions can be obtained.

Appendix B. Variances and covariances
The variances and the covariances between the components of θx can be obtanied as

follows for k, l = 0, 1, 2 :

var (αx) =
4∑

i=1
var

(
m′

i
) ( ∂αx

∂m′
i

)2
+ 2

∑∑
i<j

cov
(
m′

i,m
′
j
) ( ∂αx

∂m′
i

)(
∂αx

∂m′
j

)

var (φk) =
4∑

i=1
var

(
m′

i
) ( ∂φk

∂m′
i

)2
+ 2

∑∑
i<j

cov
(
m′

i,m
′
j
) ( ∂φk

∂m′
i

)(
∂φk

∂m′
j

)

cov (αx, φk) =
4∑

i=1
var

(
m′

i
) ( ∂αx

∂m′
i

)(
∂φk

∂m′
i

)
+ 2

∑∑
i<j

cov
(
m′

i,m
′
j
) ( ∂αx

∂m′
i

)(
∂φk

∂m′
j

)

cov (φk, φl) =
4∑

i=1
var

(
m′

i
) ( ∂φk

∂m′
i

)(
∂φl

∂m′
i

)
+ 2

∑∑
i<j

cov
(
m′

i,m
′
j
) ( ∂φk

∂m′
i

)(
∂φl

∂m′
j

)

Appendix C. Influence function

IF (αx, F ;x) = lim
z↓0

1
ε

[
− ς1 + ς2 + ς3
ω1 + ω2 + ω3

− v1 + v2 + v3
τ1 + τ2 + τ3

]
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where

ς1 = −12µ′
4(W )µ′3

1 (W ) + 20µ′
2(W )µ′

3(W )µ′2
1 (W )

ς2 = −9µ′
1(W )µ′3

2 (W ) + 13µ′
1(W )µ′

2(W )µ′
4(W )

ς3 = −8µ′
1(W )µ′2

3 (W ) − 3µ′2
2 (W )µ′

3(W ) − µ′
3(W )µ′

4(W )
ω1 = 8µ′3

1 (W )µ′
3(W ) − 6µ′2

1 (W )µ′2
2 (W )

ω2 = 10µ′2
1 (W )µ′

4(W ) − 32µ′
1(W )µ′

2(W )µ′
3(W )

ω3 = 18µ′3
2 (W ) − 10µ′

2(W )µ′
4(W ) + 12µ′2

3 (W )
v1 = −12µ′

4(F )µ′3
1 (F ) + 20µ′

2(F )µ′
3(F )µ′2

1 (F )
v2 = −9µ′

1(F )µ′3
2 (F ) + 13µ′

1(F )µ′
2(F )µ′

4(F )
v3 = −8µ′

1(F )µ′2
3 (F ) − 3µ′2

2 (F )µ′
3(F ) − µ′

3(F )µ′
4(F )

τ1 = 8µ′
1(F )µ′

3(F ) − 6µ′2
1 (F )µ′2

2 (F ) + 10µ′
1(F )µ′

4(F )
τ2 = −32µ′

1(F )µ′
2(F )µ′

3(F ) + 18µ′3
2 (F )

τ3 = −10µ′
2(F )µ′

4(F ) + 12µ′2
3 (F )

By (3.4), we can write:

IF (αx, F ;x) = lim
z↓0

1
ε

[
−γ1 + γ2 + γ3 + γ4 + γ5 + γ6 + γ7

ρ1 + ρ2 + ρ3 + ρ4 + ρ5 + ρ6
− κ1 + κ2 + κ3
π1 + π2 + π3

]

where

γ1 =
[
9µ′

1(F )(1 − ε) − 9εx
] [

−εx2 − µ′
2(F )(1 − ε)

]3
γ2 = −

[
8µ′

1(F )(1 − ε) − 8εx
] [
εx3 − µ′

3(F )(1 − ε)
]3

γ3 = −
[
εx3 − µ′

3(F )(1 − ε)
] [
εx4 − µ′

4(F )(1 − ε)
]

γ4 =
[
µ′

1(F )(1 − ε) − εx
]4 [12εx4 − 12µ′

4(F )(1 − ε)
]

γ5 = 3
[
εx2 − µ′

2(F )(1 − ε)
]2 [

εx3 − µ′
3(F )(1 − ε)

]
γ6 =

[
µ′

1(F )(1 − ε) − εx
]2 [

εx3 − µ′
3(F )(1 − ε)

] [
20εx2 − 20µ′

2(F )(1 − ε)
]

γ7 =
[
12µ′

1(F )(1 − ε) − 12εx
] [
εx2 − µ′

2(F )(1 − ε)
] [
εx3 − µ′

3(F )(1 − ε)
]

ρ1 = 8
[
εx− µ′

1(F )(1 − ε)
]3 [−εx3 − µ′

3(F )(1 − ε)
]

ρ2 = 10
[
µ′

1(F )(1 − ε) − εx
]2 [

εx4 − µ′
4(F )(1 − ε)

]
ρ3 =

[
εx4 − µ′

4(F )(1 − ε)
] [

10εx2 − 10µ′
2(F )(1 − ε)

]
ρ4 = 6

[
εx− µ′

1(F )(1 − ε)
] [
εx2 − µ′

2(F )(1 − ε)
]2

ρ5 = 18
[
εx2 − µ′

2(F )(1 − ε)
]3

− 12
[
εx3 − µ′

3(F )(1 − ε)
]2

ρ6 =
[
32µ′

1(F )(1 − ε) − 32εx
] [
εx2 − µ′

2(F )(1 − ε)
] [
εx3 − µ′

3(F )(1 − ε)
]
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and

κ1 = −12µ′
4(F )µ′3

1 (F ) + 20µ′
2(F )µ′

3(F )µ′2
1 (F )

κ2 = −9µ′
1(F )µ′3

2 (F ) + 13µ′
1(F )µ′

2(F )µ′
4(F )

κ3 = −8µ′
1(F )µ′2

3 (F ) − 3µ′2
2 (F )µ′

3(F ) − µ′
3(F )µ′

4(F )
π1 = 8µ′

1µ
′
3 − 6µ′2

1 µ
′2
2 + 10µ′2

1 µ
′
4

π2 = −32µ′
1(F )µ′

2(F )µ′
3(F ) + 18µ′3

2 (F )
π3 = −10µ′

2(F )µ′
4(F ) + 12µ′2

3 (F )

After differentiating with respect to ϵ, (3.14) can be obtained.

Appendix D. Simulation results

Table 3. The Variances of the Components of θx

n = 50 Type I Type VI Type IV Type III
Var (α̂x) 0.3582 0.0828 0.0507 0.5584
Var

(
ϕ̂0
)

6.3323 0.6781 0.5182 8.9231
Var

(
ϕ̂1
)

0.3518 0.4445 0.1142 0.4950
Var

(
ϕ̂2
)

0.0141 0.0225 0.0034 -

Table 4. The Variances of the Components of θy

n = 50 Type I Type VI Type IV Type III
Var (α̂y) 0.2929 0.0679 0.0516 0.3959
Var (φ̂0) 3.0491 0.2202 0.0649 7.7625
Var (φ̂2) 0.0137 0.0214 0.0036 -

Table 5. The Variances of the Components of θz

n = 50 Type I Type VI Type IV Type III
Var

(
λ̂0
)

2.3626 20.4056 29.7875 6.19 × 108

Var
(
λ̂1
)

0.5206 148.3669 0.0136 40.4044
Var

(
λ̂2
)

0.0415 0.0700 0.0400 −

Table 6. The Variances of the Components of θt

n = 50 Type I Type VI Type IV Type III
Var (α̂t) 0.0902 0.0683 0.0376 0.1240
Var

(
ψ̂0
)

0.3182 0.2654 0.0681 0.6483
Var

(
ψ̂2
)

0.0216 0.0209 0.0020 -
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Table 7. The Correlations Between of the Components of θx

n = 800 Type I Type VI Type IV Type III
Corr

(
α̂x, ϕ̂0

)
0.8557 0.6458 0.8316 0.7549

Corr
(
α̂x, ϕ̂1

)
0.4135 -0.0961 0.4963 0.9036

Corr
(
α̂x, ϕ̂2

)
-0.5324 -0.4259 -0.1864 -

Corr
(
ϕ̂0, ϕ̂1

)
0.3483 0.5512 0.7414 0.8601

Corr
(
ϕ̂0, ϕ̂2

)
-0.6710 0.1955 -0.0922 -

Corr
(
ϕ̂1, ϕ̂2

)
0.4427 0.9237 0.7640 -

Table 8. The Correlations Between of the Components of θy

n = 800 Type I Type VI Type IV Type III
Corr (α̂y, φ̂0) 0.8127 0.7431 0.6640 0.8389
Corr (α̂y, φ̂2) -0.6037 -0.4494 -0.1864 -
Corr (φ̂0, φ̂2) -0.8690 -0.8553 -0.6847 -

Table 9. The Correlations Between of the Components of θz

n = 800 Type I Type VI Type IV Type III
Corr

(
λ̂0, λ̂1

)
0.8033 0.8101 0.7337 0.8406

Corr
(
λ̂0, λ̂2

)
-0.8199 -0.8733 -0.8655 -

Corr
(
λ̂1, λ̂2

)
-0.8686 -0.8312 -0.7156 -

Table 10. The Correlations Between of the Components of θt

n = 800 Type I Type VI Type IV Type III
Corr

(
α̂t, ψ̂0

)
0.8120 0.7479 0.6554 0.8391

Corr
(
α̂t, ψ̂2

)
-0.6052 -0.4628 -0.1827 -

Corr
(
ψ̂0, ψ̂2

)
-0.8705 -0.8569 -0.6883 -

Table 11. Norms of the Difference Vectors for Type I Distribution

n norm
(
θx − θ̂x

)
norm

(
θy − θ̂y

)
norm

(
θz − θ̂z

)
norm

(
θt − θ̂t

)
50 1.1680 1.6999 0.9120 0.5911
100 0.9018 1.0298 0.5521 0.3260
200 0.5376 0.5373 0.2872 0.1690
400 0.2577 0.2668 0.1388 0.0745
800 0.1297 0.1183 0.0634 0.0336
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Table 12. Norms of the Difference Vectors for Type VI Distribution

n norm
(
θx − θ̂x

)
norm

(
θy − θ̂y

)
norm

(
θz − θ̂z

)
norm

(
θt − θ̂t

)
50 33.3814 1.0459 978.09 0.3402
100 0.5835 0.4252 0.3479 0.4463
200 0.2588 0.2049 0.1622 0.2061
400 0.1256 0.1010 0.0828 0.1042
800 0.0619 0.0543 0.0423 0.0519

Table 13. Norms of the Difference Vectors for Type IV Distribution

n norm
(
θx − θ̂x

)
norm

(
θy − θ̂y

)
norm

(
θz − θ̂z

)
norm

(
θt − θ̂t

)
50 0.4385 0.1339 0.0759 0.1478
100 0.2304 0.0613 0.0360 0.0718
200 0.1221 0.0271 0.0163 0.0396
400 0.0592 0.0184 0.0124 0.0258
800 0.0315 0.0146 0.0100 0.0165

Table 14. Norms of the Difference Vectors for Type III Distribution

n norm
(
θx − θ̂x

)
norm

(
θy − θ̂y

)
norm

(
θz − θ̂z

)
norm

(
θt − θ̂t

)
50 3.7951 6.2196 6.6e+07 2.8056
100 3.5491 3.6116 1.7e+03 0.8956
200 1.9712 2.0185 11.6367 0.6075
400 1.5363 1.5400 0.8167 0.4770
800 1.2904 1.3025 0.7063 0.4058

Appendix E. Real-life data results

(a) (c)

(b) (d)

Figure 5. Influence Function of αx(a), ϕ0( b), ϕ1(c) and ϕ2(c) for Type IV distribution.
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Table 15. Relative Efficiency Comparison of the Estimators

n = 50 Type I Type VI Type IV Type III
θx/θy 0.4746 0.3361 0.3143 0.4809
θx/θz 0.3605 0.0493 0.6094 3.9 × 10−4

θy/θz 0.6932 0.0773 2.4180 2.3 × 10−5

θx/θt 1.0652 0.3086 0.2869 1.5993
θy/θt 2.9388 0.8788 0.8865 6.0651
θt/θz 0.2359 0.8340 0.2674 3.9 × 10−6

n = 100 Type I Type VI Type IV Type III
θx/θy 0.3920 0.2783 0.2647 0.3698
θx/θz 0.3732 0.0832 0.2465 0.0414
θy/θz 0.9364 0.1998 0.9089 0.0374
θx/θt 0.9731 0.2616 0.2245 1.3017
θy/θt 3.2499 0.9190 0.8163 6.6039
θt/θz 0.2877 1.0779 0.9073 0.0057
n = 200 Type I Type VI Type IV Type III
θx/θy 0.3340 0.2310 0.2202 0.2817
θx/θz 0.4115 0.2685 0.1949 0.1080
θy/θz 1.3211 1.2224 0.8495 0.2372
θx/θt 0.8441 0.2304 0.1904 1.0139
θy/θt 3.4740 0.9796 0.8275 6.8265
θt/θz 0.3793 1.2424 0.8585 0.0347
n = 400 Type I Type VI Type IV Type III
θx/θy 0.2746 0.1928 0.1842 0.2238
θx/θz 0.3387 0.2367 0.1684 0.3208
θy/θz 1.3231 1.3143 0.8871 1.7163
θx/θt 0.7254 0.1872 0.1620 0.8173
θy/θt 3.6523 0.9616 0.8427 6.9788
θt/θz 0.3623 1.3667 1.0527 0.2459
n = 800 Type I Type VI Type IV Type III
θx/θy 0.2307 0.1630 0.1566 0.1763
θx/θz 0.3045 0.2140 0.1471 0.2719
θy/θz 1.4480 1.4378 0.9201 1.9150
θx/θt 0.6201 0.1604 0.1390 0.6511
θy/θt 3.7197 0.9837 0.8588 7.0976
θt/θz 0.3877 1.4654 1.0994 0.2698

(a) (b)

(c)

Figure 6. Influence Function of αy(a), φ0( b), and φ2( c) for Type IV distribution.
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(a) (b)

(c)

Figure 7. Influence Function of ψ0(a), ψ1( b), and ψ2(c) for Type IV distribution.

(a) (b)

(c)

Figure 8. Influence Function of λ0(a), λ1( b), and λ2(c) for Type IV distribution.


