DOI: 10.19113/sdufenbed.1031209

Hidrazon Türevi Yeni Fe(II), Co(II), Ni(II) ve Cu(II) Komplekslerinin Sentezi ve Karakterizasyonu

Hatice Gamze SOGUKOMEROGULLARI^{*1}, Eyüp BAŞARAN²

¹Gaziantep Üniversitesi, Sağlık Hizmetleri MYO, Tıbbi Hizmetler ve Teknikleri Bölümü, 27310, Gaziantep, Türkiye

²Batman Üniversitesi, Teknik Bilimler MYO, Kimya ve Kimyasal İşleme Teknolojileri Bölümü, 72060, Batman, Türkiye

(Alınış / Received: 01.12.2021, Kabul / Accepted: 02.03.2022, Online Yayınlanma / Published Online: 20.08.2022)

Öz: 2-hidroksinaftaldehit ile nikotinik hidrazit'in kondenzasyon reaksiyonundan N-((2-hidroksinaftalen-1-il)metilen)nikotinohidrazit ligandı elde edilmiştir. N-((2hidroksinaftalen-1-il)metilen)nikotinohidrazit ligandı ile Fe(II), Co(II), Ni(II) ve Cu(II) asetat tuzlarının (2:1) reaksiyonundan yeni hidrazon metal L₂Fe, L₂Ni, L₂Co ve L₂Cu₂ kompleksleri sentezlenmiştir. Sentezlenen bileşikler FT-IR, NMR (sadece ligand), UV-Vis, elementel analiz, molar iletkenlik ölçümü, manyetik duyarlılık gibi tekniklerle karakterize edilmiştir. Manyetik duyarlılık ölçümleri L₂Fe, L₂Co L₂Ni ve L₂Cu₂ kompleksleri için sırasıyla 5.96 BM, 1.03 BM, 1.08 BM ve 1.61 BM olarak kaydedilmiştir. L₂Cu₂, L₂Ni ve L₂Co komplekslerinin antiferromanyetik özellikte olduğu belirlenmiştir. L₂Fe, L₂Co ve L₂Ni kompleksleri oktahedral, L₂Cu₂ kompleksi ise kare düzlem geometriye sahiptir. Komplekslerin molar iletkenlik değerleri 1.31-2.61 μS/cm arasında olup, iletkenlik özelliği taşımamaktadır.

Synthesis and Characterization of New Hydrazone Derivatives Fe(II), Co(II), Ni(II) and Cu(II) Complexes

Keywords Hydrazone, Schiff Base, Metal complex, Characterization

Anahtar Kelimeler

Metal kompleks,

Karakterizasyon

Hidrazon,

Schiff baz,

Abstract: N-((2-hydroxynaphthalen-1-yl)methylene)nicotinohydrazide ligand derived from the condensation reaction of 2-hydroxynaphthaldehyde and nicotinic hydrazide was obtained. New hydrazone metal complexes L_2Fe , L_2Co , L_2Ni and L_2Cu_2 were synthesized from the reaction of N-((2-hydroxynaphthalen-1-yl)methylene)nicotinohydrazide ligand and Fe(II), Co(II), Ni(II) and Cu(II) acetate salts in a 2:1 stoichiometric ratio, respectively. The synthesized compounds were characterized by techniques such as FT-IR, NMR (ligand only), UV-Vis, elemental analysis, molar conductivity measurement, magnetic susceptibility. Magnetic susceptibility measurements were recorded as 5.96 BM, 1.03 BM, 1.08 BM and 1.61 BM for the L_2Fe , L_2Co L_2Ni and L_2Cu_2 complexes, respectively. It has been determined that the L_2Cu_2 , L_2Ni and L_2Co complexes have antiferromagnetic properties. The L_2Fe , L_2Co and L_2Ni complexes have octahedral geometry, while the L_2Cu_2 complex has a square plane geometry. The molar conductivity values of the complexes are between 1.31-2.61 μ S/cm and do not have conductivity properties.

1. Giriş

Koordinasyon bileşikleri, bilim ve teknolojideki geniş uygulama alanları nedeniyle özel ilgi konusu olmuştur [1-3]. Özellikle Schiff baz ligandı içeren geçiş metali kompleksleri, çoğunlukla kataliz [4, 5], kemosensörler [6, 7], lüminesans malzemeler [8, 9], enerji malzemeleri [10, 11], manyetik-yapısal kimya [12, 13] ve biyolojik alanlar [14–17] gibi çeşitli alanlardaki önemli uygulamaları nedeniyle dikkat çekmektedir. Schiff baz kompleksleri, kullanılan aldehit ve amine bağlı olarak, ligandlar için çok çeşitli olası yapılar oluşturabilmesi nedeniyle, yıllar içinde önemli ölçüde ilgi odağı olan konular arasında yer almıştır [18]. Ayrıca, oksijen, azot ve kükürt donör atomları içeren ligandlar ve bunların geçiş metali kompleksleri biyolojik ve farmakolojik uygulamalarının bir sonucu olarak olağanüstü bir ilgi görmüştür [19]. Triatomik, azometin(–C=N–NH–) yapısına sahip Schiff baz ailesinin bir üyesi olan hidrazonlar, koordinasyon kimyasının gelişiminde önemli bir rol oynamaktadır. Hidrazon ligand yapı iskeletleri, "ayrıcalıklı ligandlar"

olarak kabul edilir ve kolay sentez yöntemleri, iyi çözünürlükleri ve yapısal özellikleri nedeniyle yaygın olarak kullanılır [20]. Hidrazonlar ve geçiş metali kompleksleri, antimikrobiyal [21], antimalaryal [22], antiviral [23], antioksidan [24], antitüberküler [25], antitümör [26] ve enzim aktiviteleri [27] gibi farklı uygulamalarının bir sonucu olarak büyük ilgi görmüştür.

Bu çalışmada, bir hidrazon türevi ligand olan N-((2hidroksinaftalen-1-il)metilen)nikotinohidrazit ve yeni Ni(II), Cu(II), Fe(II) ve Co(II) kompleksleri sentezlenmiştir. Sentezlenen bileşiklerin yapıları; FT-IR, NMR, elementel analiz, UV-Vis, molar iletkenlik, manyetik duyarlılık gibi yöntemlerle aydınlatılmıştır.

2. Materyal ve Metot

2.1. Materyal

Çalışmada kullanılan çözücüler ve kimyasal maddeler Sigma-Aldrich firmasından ticari olarak alındı ve herhangi bir saflaştırma işlemi yapılmadan kullanıldı. Çalışmada kullanılan cihazların marka ve modelleri Tablo 1 de yer almaktadır.

Tablo 1. Çalışmada Kullanılan Cihazların Marka ve Modelleri

Cihaz Adı	Marka ve Model
Elementel Analiz	Thermo Scientific Flash EA 2000
Cihazı	CHNS
UV-Vis	PG Instruments (UK) T80 + UV-
	Vis spektrofotometre
FT-IR	Perkin Elmer Spectrum 100 FT-
	IR Spektrometresi (ATR)
Manyetik Duyarlılık Terazisi	Sherwood Scientific
Molar İletkenlik	ORION 4 STAR pH Conductivity
	Benchtop
	Bruker Yüksek Performanslı
NMR	Dijital FTNMR (400 MHz)
	spektrometresi

2.2. Metot

221 N-((2-hidroksinaftalen-1-il)metilen) nikotinhidrazit ligandının sentezi (L)

N-((2-hidroksinaftalen-1-il)metilen)nikotin hidrazit ligandı literatürde beyan edilen yönteme göre sentezlenmiştir (Şekil 1) [28]. Nikotinik hidrazit (1 mmol, 0.137 g) bir balona alınarak 20 mL etanolde çözüldü. Üzerine damla damla 2-hidroksinaftaldehit (1 mmol, 0.172 g) eklendi. Geri soğutucu altında 1 saat reflux edildi. Çözücü evaporatörden uzaklaştırıldı. Elde edilen katı etanol ve dietileterde birkaç kez yıkandı ve desikatörde kurutuldu. Katı ürün etanolde kristallendirildi. Sarı renkli, Verim %90, E.N: 256-257 °C. IR, (ATR) v, cm⁻¹: 3358 (O-H), 3210 (N-H), 3060 (C-H)aromatik, 3027 (C-H)alifatik, 1688 (C=O), 1595 (C=N), 1577 (C=N)_{pyridine}. ¹H NMR (400 MHz, DMSO-*d*₆) δ 12.60 (s, 1H, -CONH), 12.36 (s, 1H, -OH), 9.48 (s, 1H, -

CH=N), 9.16 (d, J = 1.6 Hz, 1H, piridin halkasının protonu), 8.82 (dd, *J* = 4.8, 1.4 Hz, 1H, naftil halkasının protonu), 8.36 - 8.29 (m, 2H, piridin ve naftil halkasının protonları), 7.96 (d. / = 9.0 Hz, 1H, naftil halkasının protonu), 7.92 (d, J = 8.2 Hz, 1H, naftil halkasının protonu), 7.66 - 7.61 (m, 2H, naftil halkasının protonu), 7.43 (t, J = 7.4 Hz, 1H, piridin halkasının protonu), 7.26 (d, J = 8.9 Hz, 1H, naftil halkasının protonu). ¹³C NMR (400 MHz, DMSO-d₆) δ 161.612 (C=O), 158.564 (C=N_{pyridine}), 153.061 (C=N), 149.056-108.991 (aromatik karbonlar). UV-Vis (DMF) λ_{max} (Abs): 490 (0.223), 465 (0.221), 450 (0.149), 380 (0.243), 365 (0.281), 350 (0.251), 325 (0.284), 320 (0.201), 295 (0.172), 265 (0.331).

Şekil 1. Ligandın gösterimi

2.2.2. Komplekslerin genel sentez prosedürü

Bir beher içerisinde 1 mmol ligandın 20 mL etanoldeki çözeltisi üzerine 0.5 mmol metal asetat tuzunun 15 mL etanoldeki cözeltisi eklendi. Metal tuzunun ligand çözeltisine ilavesiyle aniden renk dönümü gözlendi. Tepkime ortamı 65 °C sıcaklıkta 30 dakika boyunca manyetik karıstırıcı ile karıstırıldı. Cökme gerçekleştiği anda reaksiyon bitirildi. Çöken madde süzüldü, soğuk su, metanol ve dietileterde bir kaç kez yıkandı. Bileşik etil alkolde saflaştırıldı ve desikatörde kurutuldu (Şekil 2).

Şekil 2. Kompleklerin genel sentez şeması

2.2.2.1. [Fe(L)₂]·H₂O kompleksi

Oluşan demir kompleksi siyah renklidir. Verim: 0.453 g (69 %). E.N: 330 °C üzeri dekompoze. IR, (ATR) v, cm-¹: 3365 (0-H), 3199 (N-H), 3060 (C-H)_{aromatik}, 2987 (C-H)alifatik, 1614 (C=O), 1595 (C=N), 522 (M-N), 493 (M-0); UV-Vis (DMF) λ_{max} (Abs): 540 (0.08), 510 (0.093), 455 (0.101), 420 (0.289), 400 (0.321), 385 (0.308), 325 (0.371), 275 (0.549) nm; μ_{eff}: 5.96 B.M. İletkenlik 2x10⁻⁵ M DMF (Λ_M): 1.31 µS/cm. Teorik: C₃₄H₂₄FeN₆O₅ (652.44); C, 62.59; H, 3.71; N, 12.88 %. Bulunan: C, 61.91, H, 3.64, N, 12.48 %.

2.2.2.2. [Co(L)₂]·3H₂O kompleksi

Oluşan demir kompleksi açık kahve renklidir. Verim: 0.529 g (76 %). E.N: 305 °C üzeri dekompoze. IR, (ATR) v, cm⁻¹: 3392 (O-H), 3224 (N-H), 3054 (C-H)_{aromatik}, 2987 (C-H)_{alifatik}, 1614 (C=O), 1596 (C=N), 525 (M-N), 456 (M-O); UV-Vis (DMF) λ_{max} (Abs): 455 (0.215), 445 (0.207), 410 (0.131), 345 (0.186), 280 (0.638) nm; μ_{eff} : 1.03 B.M. İletkenlik 2x10⁻⁵ M DMF (Λ_{M}): 1.86 μ S/cm. Teorik: C₃₄H₂₈CoN₆O₇ (691.56); C, 59.05; H, 4.08; N, 12.15 %. Bulunan: C, 59.66, H, 3.80, N, 12.35 %.

2.2.2.3. [Ni(L)2]·3H2O kompleksi

Oluşan nikel kompleksi bordo renklidir. Verim: 0.631 g (91%). E.N: 270 °C üzeri dekompoze. IR, (ATR) v, cm⁻¹: 3355 (0-H), 3238 (N-H), 3088 (C-H)_{aromatik}, 2987 (C-H)_{alifatik}, 1616 (C=O), 1583 (C=N), 531 (M-N), 482 (M-O); UV-Vis (DMF) λ_{max} (Abs): 490 (0.119), 465 (0.125), 440 (0.116), 425 (0.114), 380 (0.306), 360 (0.334), 345 (0.267), 325 (0.352), 320 (0.269), 290 (0.228), 270 (0.439) nm; μ_{eff} : 1.08 B.M. İletkenlik 2x10⁻⁵ M DMF (Λ_{M}): 2.54 μ S/cm. Teorik: C₃₄H₂₈N₆NiO₇ (691.32); C, 59.07; H, 4.08; N, 12.16%. Bulunan: C, 58.85; H, 3.91; N, 12.86%.

2.2.2.4. [Cu₂(L)₂] kompleksi

Oluşan bakır kompleksi koyu kahve renklidir. Verim: 0.592 g (85 %). E.N: 360 °C üzeri dekompoze. IR, (ATR) v, cm⁻¹: 3079 (C-H)_{aromatik}, 2988 (C-H)_{alifatik}, 1609, 1585 (C=N), 517 (M-N), 462 (M-O); UV-Vis (DMF) λ_{max} (Abs): 490 (0.187), 465 (0.195), 450 (0.158), 380 (0.369), 365 (0.413), 355 (0.374), 325 (0.428), 320 (0.315), 295 (0.239), 265 (0.473) nm; µ_{eff}: 1.61 B.M. İletkenlik 2x10⁻⁵ M DMF (Λ_{M}): 2.61 µS/cm. Teorik: C₃₄H₂₂Cu₂N₆O₄ (705.67); C, 57.87; H, 3.14; N, 11.91 %. Bulunan: C, 58.50; H, 3.72; N, 12.48 %.

3. Bulgular ve Tartışma

N-((2-hidroksinaftalen-1-il)metilen)nikotin hidrazit ligandı literatürde verildiği gibi sentezlenmiştir [28]. (Şekil 1) Sentezlenen ligand literatür verileriyle uyum icerisindedir. Hidrazon türevi ligand ile sırasıyla Fe(II), Co(II), Ni(II) ve Cu(II) asetat tuzlarının (2:1) ligand:metal sitokiyometrik oranda reaksiyonundan dört yeni metal kompleksi (L₂Fe, L₂Co, L₂Ni ve L₂Cu₂) sentezlenmiştir. (Şekil 2) Sentezlenen Ni(II), Co(II) ve Fe(II) kompleksleri 2:1 ligand:metal sitokiyometrik oranına sahipken, Cu(II) kompleksi 2:2 metal:ligand sitokivometrik oranına sahiptir. Sentezlenen bileşiklerin elementel analiz sonuçları, molekül ağırlıkları, verimleri, renkleri, fiziksel görünümleri ve molekül formülleri Bölüm 2.2. Yöntemler bölümünde belirtilmistir. Hidrazon türevi metal komplekslerin havava karsı renkli ve dayanıklı olduğu gözlemlenmiştir. Kompleksler DMSO, DMF, THF gibi gibi yaygın organik çözücülerde iyi çözünmektedir. Komplekslerin 1.31-2.61 µS/cm arasında molar iletkenlik değerleri tespit edilmiştir. Kompleks bileşiklerin iletken olmadığı gözlenmiştir. [29, 30].

2-hidroksinaftil aldehit ile nikotinikhidrazidinden elde edilen hidrazon bileşiğinin ¹H-NMR spektrumu incelendiğinde, yapının oluşumunu gösteren en önemli grup olan azometine (CH=N) ait protonu 9.48 ppm'de rezonans olduğu görülmektedir. Yapısındaki hidroksil grubu (-OH) 12.36 ppm'de rezonans olurken, -CONH protonu 12.60 ppm'de rezonans olduğu görülmektedir. Ayrıca bileşiğin iskeletinde bulunan piridin ve naftil halkalarına ait protonlar 9.16 ve 7.26 ppm arasında rezonans oldukları tespit edildi. (Sekil 3) Yine ligandın ¹³C-NMR spektrumu incelendiğinde (C=O) karbonil karbonunun 161.612 ppm'de, (C=N)_{piridin} karbonunun 158.564 ppm'de, (C=N) azometin karbonunun 153.061 ppm'de, aromatik karbonların ise 149.056-108.991 ppm arasında çıktığı görülmektedir [28] (Sekil 4).

Şekil 5. Ligandın FT-IR spektrumu

Şekil 6. L-Fe kompleksinin FT-IR spektrumu

Şekil 7. L-Co kompleksinin FT-IR spektrumu

Şekil 8. L-Ni kompleksinin FT-IR spektrumu

Sentezlenen bileşiklerin FT-IR spektrumlarına bakıldığında, 3088-3054 cm⁻¹ ligand ve kompleksler için aromatik C-H gerilme bandını, 3027-2987 cm-1 alifatik C-H gerilme bandını, 1596-1583 cm-1 C=N gerilme bandını [31, 32], 531-517 cm⁻¹ M-N gerilme bandını ve 493-456 cm⁻¹ ise M-O gerilme bandını Ligandın göstermektedir [33, 34]. FT-IR spektrumunda 1595 cm⁻¹ de görülen C=N bandının komplekslerde 1596-1583 cm-1 de görülmesi komplekslesmenin azometin grubu üzerinden gerçekleştiğini göstermektedir [35, 36]. Ayrıca ligandda 1688 cm⁻¹ de görülen (C=O) bandı cm⁻¹ komplekslerde 1616-1609 aralığında gözlemlenmistir. Bu da (C=O) grubunun da kompleksleşmeye katıldığını göstermektedir. 3238-3199 cm-1 aralığında gözlemlenen bandlar N-H gerilme bandları olarak yorumlanmıştır [37]. FT-IR incelendiğinde N-H spektrumları bantlarının kaybolmadığı gözlenmiştir. Bu da kompleksleşme esnasında da ligandın keto formunda bağlandığını

göstermektedir. Eğer enol formunda bağlanmış olsaydı FT-IR spektrumundaki N-H piklerinin kaybolması gerekirdi. Yalnızca Cu(II) kompleksi olusumu esnasında enol formunda olduğu düşünülmektedir. Çünkü spektrumu incelendiğinde N-H bandının kaybolduğu gözlenmiştir. 3392-3355 aralığında gözlemlenen cm-1 bandlar ise komplekslerdeki koordinasyon küresi dışındaki sulara ait olan O-H gerilme bandlarını işaret etmektedir (Sekil 5-9).

Şekil 9. L-Cu kompleksinin FT-IR spektrumu

UV-Vis spektrumları, 2x10⁻⁵ M konsantrasyonda N,Ndimetilformamid çözücüsünde, 190-1100 nm aralığında ölçülmüştür. Sentezlenen hidrazon türevi komplekslere ait UV-Vis spektrumu ve sonuçları komplekslerde incelendiğinde 265-295 nm aralığındaki geçişlerin naftalen ve piridin halkasına ait π - π * geçişleri olduğu düşünülmektedir [38] (Şekil 10). Buna ilaveten 320-380 nm aralığındaki absorbsiyon bantlarının piridin halkasına ve hidrazon grubuna ait gecislerine ait olduğu düsünülmektedir. $n-\pi^*$ Komplekslerde 410-540 nm aralığında ortaya cıkan yeni bantlar yük transfer geçişleri olarak gözlenmiştir. Bu da kompleks oluşumuna işaret etmektedir [39]. Bakır kompleksinin kare düzlem geometride ve dinükleer yapıda olduğu düşünülmektedir. Literatürde benzer yapılarda da aynı bölgelerde n- π^* , π - π * ve yük transfer geçişlerinin görülmesi yapıyı desteklemektedir [40].

Şekil 10. Bileşiklerin Çakıştırılmış UV-Vis Spektrumu

Komplekslerin manyetik duyarlılık ölçümleri 298 K de ölçülmüştür. Manyetik duyarlılık değerlerine bakıldığında, L-Cu 1.61 BM, L-Ni 1.08 BM, L-Fe 5.96

BM ve L-Co 1.03 BM olarak kaydedilmiştir. L-Cu için ölçülen 1.61 BM değer bulunmuştur. L-Cu kompleksi için kare düzlem [41] ve dinükleer yapı önerilmiştir. Dinükleer bakır kompleksleri incelendiğinde genellikle güçlü antiferromanyetik özellikte oldukları gözlemlenmiştir [42,43]. L-Ni için ölçülen değer oktahedral nikel kompleksleri için verilen değerler aralığından (2.8-3.2 BM) oldukça düşüktür [44]. Nikel kompleksinin antiferromanyetik özellikte olduğu düşünülmektedir [45]. Literatürde nikel kompleksi için bulunan 1.08 BM değerine yakın oktahedral yapıya sahip yapılar bulunmaktadır [44]. Yine L-Co kompleksinin manyetik verilerine bakıldığında literatürdeki oktahedral yapılara ait değerlerden oldukça düşük olduğu gözlenmiştir. Kobalt kompleksinin de antiferromanyetik özellikte ve oktahedral yapıda olduğu düşünülmektedir. L-Fe kompleksi için bulunan değer yapının oktahedral geometride olduğunu göstermektedir [46].

4. Sonuç

Bu çalışmada hidrazon türevi komplekslerin doğası üzerinde durulmuştur. Yapılan çalışmada N-((2hidroksinaftalen-1-il)metilen)nikotin hidrazit ligandı ve bu yapının yeni Fe(II), Co(II), Ni(II) ve Cu(II) kompleksleri sentezlenmistir. Sentezlenen hidrazon türevi bileşiklerin yapıları UV-Vis, elementel analiz, NMR (sadece ligand), FT-IR, molar iletkenlik ve manyetik duyarlılık gibi çeşitli yöntemlerle karakterize edilmiştir. Sentezlenen kompleksler oriiinal olup literatür çalışmalarıyla uvum göstermektedir. Sentezlen Cu(II) kompleksinin 2:2 komplekslerin ise ligand:metal diğer 2:1sitokiyometrik oranına sahip olduğu belirlenmiştir. Bakır kompleksinin dört koordinasyonlu kare düzlem yapıda, diğer komplekslerin ise altı koordinasyonlu oktahedral yapıda olduğu düşünülmektedir.

Literatürde hidrazon türevi komplekslerin uygulama alanları göz önüne alındığında, sentezlenen komplekslerin ileride yapılacak olan çalışmalara katkısı olacağı düşünülmektedir.

Etik Beyanı

Bu çalışmada, "Yükseköğretim Kurumları Bilimsel Araştırma ve Yayın Etiği Yönergesi" kapsamında uyulması gerekli tüm kurallara uyulduğunu, bahsi geçen yönergenin "Bilimsel Araştırma ve Yayın Etiğine Aykırı Eylemler" başlığı altında belirtilen eylemlerden hiçbirinin gerçekleştirilmediğini taahhüt ederiz.

Kaynakça

- [1] Rebilly, J. N., Colasson, B., Bistri, O., Over, D., Reinaud, O. 2015. Biomimetic cavity-based metal complexes. Chemical Society Review, 44, 467-489.
- [2] Shibata, S., Tsuge, K., Sasaki, Y., Ishizaka, S., Kitamura, N. 2015. Directional energy transfer in

mixed-metallic copper (I)–Silver (I) coordination polymers with strong luminescence. Inorganic Chemistry, 54, 9733-9739.

- [3] Maity, T., Saha, D., Bhunia, S., Brandão, P., Das, S., Koner, S. 2015. A family of ligand and anion dependent structurally diverse Cu (II) Schiff-base complexes and their catalytic efficacy in an Oarylation reaction in ethanolic media. RSC Advances, 5, 82179-82191.
- [4] Zaltariov, M.-F., Vieru, V., Zalibera, M., Cazacu, M., Martins, N. M. R., Martins, L. M. D. R. S., Rapta, P., Novitchi, G., Shova, S., Pombeiro, A.J.L., Arion, V. B. 2017. A Bis(μ-chlorido)-Bridged Cobalt(II) Complex with Silyl-Containing Schiff Base as a Catalyst Precursor in the Solvent-Free Oxidation of Cyclohexane. European Journal of Inorganic Chemistry, 37, 4324-4332.
- [5] Cao, W., Zheng, X. J., Fang, D. C., Jin, L. P. 2014. A highly selective and sensitive Zn (II) complexbased chemosensor for sequential recognition of Cu (II) and cyanide. Dalton Transactions, 43, 7298-7303.
- [6] Parsaei, M., Asadi, Z., Khodadoust, S. 2015. A sensitive electrochemical sensor for rapid and selective determination of nitrite ion in water samples using modified carbon paste electrode with a newly synthesized cobalt (II)-Schiff base complex and magnetite nanospheres. Sensors and Actuators B: Chemical, 220, 1131-1138.
- [7] Wang, Y., Mao, P. D., Wu, W. N., Mao, X. J., Fan, Y. C., Zhao, X. L., Xu, Z. H. 2018. New pyrrole-based single-molecule multianalyte sensor for Cu²⁺, Zn²⁺, and Hg²⁺ and its AIE activity. Sensors and Actuators B: Chemical, 255, 3085-3092.
- [8] Wang, S., Yang, X., Zhu, T., Bo, L., Wang, R., Huang, S., Chen, H., Jones, R.A. 2018. Construction of luminescent high-nuclearity Zn–Ln rectangular nanoclusters with flexible long-chain Schiff base ligands. Dalton Transactions, 47, 53-57.
- [9] Yang, Y., Gao, C. Y., Liu, J., Dong, D. 2016. Recent developments in rhodamine salicylidene hydrazone chemosensors. Analytical Methods, 8, 2863-2871.
- [10] Kumar, A., Lionetti, D., Day, V. W., Blakemore, J. D. 2018. Trivalent Lewis acidic cations govern the electronic properties and stability of heterobimetallic complexes of nickel. Chemistry– A European Journal, 24, 141-149.
- [11] Dong, W. K., Ma, J. C., Zhu, L. C., Zhang, Y. 2016. Nine self-assembled nickel (II)-lanthanide (III) heterometallic complexes constructed from a Salamo-type bisoxime and bearing a N-or Odonor auxiliary ligand: Syntheses, structures and magnetic properties. New Journal of Chemistry, 40, 6998-7010.
- [12] Fondo, M., Corredoira-Vázquez, J., Herrera-Lanzós, A., García-Deibe, A. M., Sanmartín-

Matalobos, J., Herrera, J. M., Colacio, E., Nuñez, C. 2017. Improving the SMM and luminescence properties of lanthanide complexes with LnO 9 cores in the presence of Zn II: an emissive Zn 2 Dy single ion magnet. Dalton Transactions, 46, 17000-17009.

- [13] Zhang, J., Xu, L., Wong, W. Y. 2018. Energy materials based on metal Schiff base complexes. Coordination Chemistry Reviews, 355, 180-198.
- [14] Cao, W., Liu, Y., Zhang, T., Jia, J. 2018. Synthesis, characterization, theoretical and antimicrobial studies of tridentate hydrazone metal complexes of Zn (II), Cd (II), Cu (II) and Co (III). Polyhedron, 147, 62-68.
- [15] Zülfikaroğlu, A., Ataol, Ç. Y., Çelikoğlu, E., Çelikoğlu, U., İdil, Ö. 2020. New Cu (II), Co (III) and Ni (II) metal complexes based on ONO donor tridentate hydrazone: Synthesis, structural characterization, and investigation of some biological properties. Journal of Molecular Structure, 1199, 127012.
- [16] Tolan, D. A., Kashar, T. I., Yoshizawa, K., El-Nahas, A. M. 2021. Synthesis, spectral characterization, density functional theory studies, and biological screening of some transition metal complexes of a novel hydrazide-hydrazone ligand of isonicotinic acid. Applied Organometallic Chemistry, 35(6), e6205.
- [17] Abdelrahman, M. S. A., Omar, F. M., Saleh, A. A., El-ghamry, M. A. 2021. Synthesis, molecular modeling, and docking studies of a new pyridazinone-acid hydrazone ligand, and its nano metal complexes. Spectroscopy, thermal analysis, electrical properties, DNA cleavage, antitumor, and antimicrobial activities. Journal of Molecular Structure, 131947.
- [18] Keser Karaoğlan, G. 2022. Synthesis of new Schiff base and its Ni(II), Cu(II), Zn(II) and Co(II) complexes; photophysical, fluorescence quenching and thermal studies. Journal of Molecular Structure, 1256, 132534.
- [19] El-Sawaf, A. K., El-Essawy, F., Nassar, A. A., El-Samanody, E. A. 2018. Synthesis, spectral, thermal and antimicrobial studies on cobalt (II), nickel (II), copper (II), zinc (II) and palladium (II) complexes containing thiosemicarbazone ligand. Journal of Molecular Structure, 1157, 381-394.
- [20] Devi, J., Yadav, J., Kumar, D., Jindal, D. K., Basu, B. 2020. Synthesis, spectral analysis and in vitro cytotoxicity of diorganotin (IV) complexes derived from indole-3-butyric hydrazide. Applied Organometallic Chemistry, 34, e5815.
- [21] Shebl, M., Saleh, A. A., Khalil, S. M., Dawy, M., Ali, A. A. 2021. Synthesis, spectral, magnetic, DFT calculations, antimicrobial studies and phenoxazinone synthase biomimetic catalytic activity of new binary and ternary Cu (II), Ni (II)

and Co (II) complexes of a tridentate ONO hydrazone ligand. Inorganic and Nano-Metal Chemistry, 51(2), 195-209.

- [22] Sarkar, S., Siddiqui, A. A., Saha, S. J., De, R., Mazumder, S., Banerjee, C., Iqbal, M. S., Nag, S., Adhikari, S., Bandyopadhyay, U. 2016. Antimalarial activity of small-molecule benzothiazole hydrazones. Antimicrobial agents and chemotherapy, 60(7), 4217-4228.
- [23] Carcelli, M., Fisicaro, E., Compari, C., Contardi, L., Rogolino, D., Solinas, C., Stevaert, A., Naesens, L. 2018. Antiviralactivityand metal ionbindingproperties of some 2-hydroxy-3methoxyphenyl acylhydrazones. BioMetals, 31(1), 81-89.
- [24] Sıcak, Y. 2017. Investigation of Antioxidant, Anticholinesterase Inhibitory, Tyrosinase Inhibitory and Urease Inhibitory Activities of Some Hydrazone Derivatives. Türk Yaşam Bilimleri Dergisi, 2(2), 165-170.
- [25] Mandewale, M. C., Thorat, B., Nivid, Y., Jadhav, R., Nagarsekar, A., Yamgar, R. 2018. Synthesis, structural studies and antituberculosis evaluation of new hydrazone derivatives of quinoline and their Zn (II) complexes. Journal of Saudi Chemical Society, 22(2), 218-228.
- [26] Abdelrahman, E. M., El-Shetary, B. A., Shebl, M., Adly, O. M. 2021. Coordinating behavior of hydrazone ligand bearing chromone moiety towards Cu (II) ions: Synthesis, spectral, density functional theory (DFT) calculations, antitumor, and docking studies. Applied Organometallic Chemistry, 35(5), e6183.
- [27] Sıcak, Y. 2018. Synthesis and Characterization of Some New Hydrazones with Anti-Urease Activities. Journal of Ongoing Chemical Research, 3(2), 71-74.
- [28] Hijazi, K. A., Taha, Z. A., Ajlouni, A. M., Al-Momani, W. M., Idris, I. M., Hamra, E. A. 2017. Synthesis and biological activities of lanthanide (III) nitrate complexes with N-(2-hydroxynaphthalen-1-yl) methylene) nicotinohydrazide Schiff Base. Medicinal Chemistry, 13(1), 77-84.
- [29] Maravalli, P.B., Dhumwad, S.D., Goudar, T.R. 1999. Synthetic, spectral, thermal and biological studies of lanthanide(III) complexes with a Schiff base derived from 3-N-methylpiperidino-4amino-5mercapto-1,2,4-triazole. Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry, 29, 525–540.
- [30] Soğukömeroğulları, H. G., Taşkın Tok, T., Yılmaz, F., Berber, İ., Sönmez, M. 2015. Synthesis, characterization, biological studies, and molecular modeling of mixed ligand bivalent metal complexes of Schiff bases based on Naminopyrimidine-2-one/2-thione. Turkish Journal of Chemistry, 39, 497–509.

- [31] Sönmez, M., Sogukomerogullari, H. G., Öztemel, F., Berber, İ. 2014. Synthesis and biological evaluation of a novel ONS tridentate Schiff base bearing pyrimidine ring and some metal complexes. Medicinal Chemistry Research, 23, 3451–3457.
- [32] Soğukömeroğullari, H. G., Sönmez, M., Berber, İ. 2016. Synthesis, characterization, antioxidant and antimicrobial studies of Cu(II), Co(II), Ni(II) and Mn(II) complexes with a new Schiff base ligand containing a pyrimidine moiety. International Journal of PharmTech Research, 9 (8), 391-398.
- [33] Sogukomerogullari, H. G., Sönmez, M., Ceyhan, G. 2019. ONO Tip Schiff Baz Komplekslerinin Sentezi, Karakterizasyonu, Katalitik Özellikleri ve Termal Çalışmaları. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 23(3), 701-708.
- [34] Belal, A. A. M., El-Deen, I. M., Farid, N. Y., Zakaria, R., Refat, M. S. 2015. Synthesis, spectroscopic, coordination and biological activities of some transition metal complexes containing ONO tridentate Schiff base ligand. Spectrochimica Acta Part A, 149, 771-787.
- [35] Dede, B., Özen, N., Görgülü, G. 2018. Synthesis, characterization, theoretical calculations and enzymatic activities of novel diimine-dioxime ligand and its homodinuclear Cu(II) complex. Journal of Molecular Structure, 1163, 357-367.
- [36] Sönmez, M., Şekerci, M. 2003. Synthesis, characterization, and thermal investigation of copper(II), nickel(II), cobalt(II), and zinc(II) complexes with 5-benzoyl-1-(phenylmethylen amino)-4-phenyl1H-pyrimidine-2-thione. Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry, 33,1689–1701.
- [37] Neethu, K.S., Sivaselvam, S., Theetharappan, M., Ranjitha, J., Bhuvanesh, N.S.P., Ponpandian, N., Neelakantan, M.A., Kaveri, M.V. 2021. *In vitro* evaluations of biomolecular interactions, antioxidant and anticancer activities of Nickel(II) and Copper(II) complexes with 1:2 coordination of anthracenyl hydrazone ligands. Inorganica Chimica Acta, 524, 120419.
- [38] Sönmez, M., Şekerci, M. 2007. The template synthesis, spectral characterization and thermal behavior of new binuclear Schiff base complexes derived from N-aminopyrimidine with 2, 3butandion. Journal of the Serbian Chemical Society, 72, 259-264.
- [39] Goorchibeygi, S., Bikas, R., Soleimani, M., Siczek, M., Lis, T. 2022. Molecular structure and catalytic

activity of Fe(III) coordination compound with ONO-donor hydrazone ligand in the oxidation of cyclooctene by H_2O_2 . Journal of Molecular Structure, 1250 (1), 131774.

- [40] Bessy Raj, B. N., Prathapachandra Kurup, M. R., Suresh, E. 2008. Synthesis, spectral characterization and crystal structure of N-2hydroxy-4-methoxybenzaldehyde-N'-4nitrobenzoyl hydrazone and its square planar Cu(II) complex. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 71 (4), 1253-1260.
- [41] Ray, M. S., Bhattacharya, R., Chaudhuri, S., Righi, L., Bocelli, G., Mukhopadhyay, G., Ghosh, A. 2003. Synthesis, characterisation and X-ray crystal structure of copper(II) complexes with unsymmetrical tetradentate Schiff base ligands: first evidence of Cu(II) catalysed rearrangement of unsymmetrical to symmetrical complex. Polyhedron, 22(4), 617-624.
- [42] Barwiolek, M., Kaczmarek-Kędziera, A., Muziol, T. M., Jankowska, D., Jezierska, J., Bieńko, A. 2020. Dinuclear Copper(II) Complexes with Schiff Bases Derived from 2-Hydroxy-5-Methylisophthalaldehyde and Histamine or 2-(2-Aminoethyl)pyridine and Their Application as Magnetic and Fluorescent Materials in Thin Film Deposition. International Journal of Molecular Sciences, 21, 4587.
- [43] Mohammadnezhad, G., Ahfad, N., Meghdadi, S., Farrokhpour, H., Schmitz, S., Haseloer, A., Buchholz, A., Plass, W., Klein, A. 2021. Dinuclear Nickel(II) and Copper(II) Complexes of 8-Quinoline-1H-pyrazole-3-carboxamide: Crystal Structure, Magnetic Properties, and DFT Calculations. European Journal of Inorganic Chemistry, 2021, 1786-1795.
- [44] Sönmez, M., Şekerci, M. 2004. A new heterocyclic Schiff base and its metal complexes. Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry, 34(3), 489-502.
- [45] Pal, A., Kumar, S. C., Ghosh, A. K., Lin, C.-H., Rivière, E., Mallah, T., Ghosh, R. 2016. Synthesis, Xray structure and catecholase activity of an antiferromagnetically coupled trinuclear nickel (II) complex. Polyhedron, 110, 221-226.
- [46] Abu-Dief, A. M., El-khatib, R. M., El Sayed S. M., Alzahrani, S., Alkhatib, F., El-Sarrag, G., Ismael, M. 2021. Tailoring, structural elucidation, DFT calculation, DNA interaction and pharmaceutical applications of some aryl hydrazone Mn(II), Cu(II) and Fe(III) complexes. Journal of Molecular Structure, 1244, 131017.