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Abstract 

In this paper, a synchronization study is proposed by using a 4D 
hyperchaotic system model to be used in secure data transfer 
applications. Active Disturbance Rejection Control (ADRC) 
method is used for synchronization process. To prove the 
success of ADRC method, it is compared with Proportional-
Integral-Derivative (PID) control method. The coefficients of 
both control methods are optimized with Particle Swarm 
Optimization (PSO) algorithm. Synchronization system is 
modelled and tested in Matlab/Simulink environment. ADRC 
and PID methods are tested in simulation environment for the 
cases without disturbance and under disturbance. It can be seen 
from the test results that the ADRC method managed to keep 
the system synchronous without being affected by any 
disturbances. On the other hand, it is clearly seen that the PID 
method cannot maintain the synchronization of system under 
disturbance effects. 
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Öz 

Bu çalışmada, güvenli veri aktarım uygulamalarında kullanılmak 
üzere 4 boyutlu hiperkaotik sistem modeli kullanılarak bir 
senkronizasyon çalışması önerilmektedir. Senkronizasyon işlemi 
için Aktif Bozucu Reddetme Kontrolü (Active Disturbance 
Rejection Control (ADRC)) yöntemi kullanılmaktadır. ADRC 
yönteminin başarısının kanıtlanması için Oransal-İntegral-Türev 
(Proportional-Integral-Derivative (PID)) kontrol yöntemiyle 
karşılaştırması yapılmıştır. Her iki kontrol yönteminin katsayıları 
Parçacık Sürü Optimizasyonu (Particle Swarm Optimization 
(PSO)) algoritması ile optimize edilmiştir. Senkronizasyon 
sistemi Matlab/Simulink ortamında modellenip test edilmiştir. 
ADRC ve PID yöntemleri, bozucunun olmadığı ve bozucunun 
olduğu durumlar için simülasyon ortamında test edilmektedir. 
ADRC yönteminin, sistemi herhangi bir bozulmadan 
etkilenmeden senkron tutmayı başardığı test sonuçlarında 
görülmektedir. Öte yandan PID yönteminin, bozucu etkiler 
altında sistemin senkronizasyonunu sağlayamadığı açıkça 
görülmektedir. 
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1. Introduction 

 

Chaotic systems are a fascinating and intricate class of 

dynamical systems that exhibit a remarkable degree of 

complexity and unpredictability. These systems are 

characterized by their sensitivity to initial conditions, 

meaning that even tiny variations in the starting 

conditions can lead to vastly different outcomes over 

time. The behavior of chaotic systems often appears 

random, yet it is governed by deterministic mathematical 

equations, making them a captivating subject of study in 

fields ranging from physics and mathematics to biology 

(Güven, 2022) economics (Guegan, 2009). Chaotic 

systems have the intriguing property of being both 

deterministic and unpredictable, challenging our 

traditional notions of causality and determinism. They are 

often described as "butterfly effect" systems, where a 

small perturbation, akin to the flap of a butterfly's wings, 

can set off a chain reaction of events with profound and 

unforeseeable consequences. The study of chaos theory, 

pioneered by mathematicians and scientists in the latter 

half of the 20th century, has provided valuable insights 

into understanding and modeling these systems 

(Oestreicher, 2022). 

 

Controlling chaotic systems is a formidable and 

intellectually stimulating endeavor that lies at the 

intersection of mathematics (Azar and Vaidyanathan, 

2015), physics (Fradkov, 2007), engineering (Fradkov and 

Evans, 2005), and a wide array of other scientific 

disciplines. Chaos, characterized by its inherent 

unpredictability and sensitivity to initial conditions, might 

seem inherently uncontrollable. However, the pursuit of 

understanding and harnessing chaos has given rise to a 

captivating field known as "chaos control." In the realm of 

chaotic systems, chaos control represents a pursuit of 
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order amidst apparent disorder. It involves the deliberate 

manipulation of system parameters or external inputs to 

steer a chaotic system's behavior toward desired states or 

trajectories (Boccaletti et al., 2000). This endeavor is 

driven by the recognition that chaos can sometimes 

hinder rather than facilitate efficient functioning, 

whether in electronic circuits, biological systems, or 

financial markets. The study of chaos control is not only 

an intellectual challenge but also holds immense practical 

importance. It finds applications in various domains, from 

stabilizing the motion of spacecraft and controlling the 

chaos in heart rhythms to optimizing the performance of 

complex industrial processes (Schöll and Schuster, 2008). 

A 4D chaotic system represents a fascinating and highly 

intricate class of dynamical systems that exhibit extreme 

sensitivity to initial conditions and an exceptionally 

complex behavior in four dimensions. These systems are 

an extension of chaotic systems, which are characterized 

by unpredictability and irregularity in their trajectories.  

 

Hyperchaotic systems, including 4D variants, take chaos 

to a whole new level by demonstrating multiple positive 

Lyapunov exponents, which indicates a more profound 

level of unpredictability and complexity. Unlike simple 

chaotic systems, which may exhibit chaotic behavior in 

three dimensions, 4D hyperchaotic systems add an 

additional dimension to the mix, making them 

exceptionally challenging to understand and analyze. The 

dynamics of these systems are often described by a set of 

nonlinear differential equations that involve various 

parameters and nonlinear terms. The study and 

exploration of 4D hyperchaotic systems have applications 

in a wide range of fields, including physics, engineering, 

cryptography, and chaos-based communication systems. 

These systems have been of particular interest due to 

their potential for secure communications and their role 

in generating pseudo-random sequences for encryption 

purposes. Iskakova et al. proposed a 4D hyperchaotic 

model (Iskakova et al., 2023). They analyzed the model for 

integer order and fractional order structures. Matignon 

stability criteria is used to show the stability of the 

fractional order system. To prove the success of the 

proposed system, they implemented a Field 

Programmable Analog Arrays (FPAA) application. Gong et 

al. presented a 4D chaotic system with coexisting hidden 

chaotic attractors (Gong et al., 2020).  

 

In this study, they proposed a linear state feedback 

controller for Sprott C chaotic system. The novel chaotic 

system's dynamic properties have been comprehensively 

examined, including investigations into phase portraits, 

bifurcation diagrams, Lyapunov exponents, and Poincaré 

maps. An analog circuit is designed and implemented to 

verify the proposed 4D chaotic system. Qi and Chen 

proposed a new 4D chaotic system (Qi and Chen, 2006). 

The proposed system displays two coexisting double-wing 

chaotic attractors. Various circuits have been designed to 

realize the proposed system. Simulation and 

experimental results are compared.  4D chaotic systems 

are difficult to control (i.e. synchronization) because they 

have more states than other systems. 

 

Synchronization of chaotic systems is a captivating 

phenomenon that has intrigued researchers and 

engineers alike for decades (Pecora and Carroll, 2015). It 

represents a fascinating interplay between chaos theory 

and control theory, offering profound insights into the 

behavior of complex dynamical systems. The concept of 

synchronization offers a means to bring order to chaos. 

Gokyildirim et al. presented a study about secure 

communication application (Gokyildirim et al., 2023). 

They proposed a five-term 3D chaotic system for crypting 

the transferred data. To show the performance of the 

proposed model, microcontroller-based implementation 

is realized. Experimental results show the success of the 

model. Assali presented a study about predefined-time 

synchronization for chaotic systems (Assali, 2021). He 

proposed a control method for synchronization of 

different dimensioned two chaotic systems. Additionally, 

the adaptive control method against parameter 

uncertainties is also used in this study. The success of the 

proposed method is proven by simulation results. 

Zaqueros-Martinez et al. presented a study about fuzzy 

synchronization of chaotic systems with hidden attractors 

(Zaqueros-Martinez et al., 2023). They examined the 

viability of employing fuzzy control to synchronize chaotic 

systems featuring hidden attractors. To achieve this, they 

utilized a specific numerical integration method designed 

to leverage the oscillatory nature of chaotic systems. A 

three-dimensional Chua chaotic system is used in this 

study. The fuzzy controller is used to achieve 

synchronization between master-slave chaotic systems. 

When the results are examined, the effect of the 

proposed system is clearly seen on chaotic systems with 

hidden attractors. Mirzaei et al. proposed a sliding mode 

controller for synchronization of chaotic systems with 

unmodeled dynamics and disturbance (Mirzaei et al., 

2023). They used a fixed time sliding mode controller. In 

this study, the fixed time synchronization problem of the 

nonlinear memristor chaotic system is also examined. The 

proposed method is tested for synchronization between 

the master and slave memristor chaotic systems in 
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simulation. The numerical simulations serve to validate 

and substantiate the robustness of the theoretical results. 

The main control methods frequently used in the 

literature are PID control (Johnson and Moradi, 2005), 

fractional order PID control (Demirtas et al., 2019; Ilten, 

2022a), sliding mode control (Ilten and Demirtas, 2019), 

fuzzy logic control (Ilten and Demirtas, 2023) and neural 

network control (Gökçe, 2023; Sarangapani, 2018). When 

the synchronization studies in the literature are 

examined, there is a lack of Active Disturbance Rejection 

Control (ADRC) application. ADRC is a cutting-edge 

control strategy that has gained significant attention and 

popularity in the field of control systems engineering 

(Feng and Guo, 2017; Huang and Xue, 2014). It represents 

a paradigm shift in the way control systems are designed 

and implemented, offering a robust and versatile 

approach to handling complex and dynamic processes in 

a wide range of applications. ADRC stands out for its 

ability to effectively reject disturbances and uncertainties 

in real-time, making it a powerful tool for achieving 

precise and stable control in challenging and 

unpredictable environments (Fareh et al., 2021). Zheng et 

al. presented ADRC based load frequency control study 

(Zheng et al., 2021). They proposed chaotic fractional-

order beetle swarm optimization (CFBSO) algorithm. To 

show effectiveness, the proposed method (CFBSO-based 

ADRC) is compared with Proportional-Integral-Derivative 

(PID) and linear ADRC. The results show the proposed 

method has smaller undershoot and shorter settling time 

then the others. Optimization has a very important place 

in controller design and must be implemented. 

Optimization is a fundamental concept that permeates 

virtually every aspect of our lives, from the way we make 

decisions in our daily routines to the complex systems 

that drive modern technology and industry. At its core, 

optimization is the art and science of finding the best 

possible solution from a set of available options, 

considering various constraints and objectives. It serves 

as a powerful tool for improving efficiency, making 

informed choices, and achieving superior outcomes 

across a wide range of disciplines (Chong et al., 2023). The 

ubiquity of optimization can be seen in fields as diverse as 

mathematics, engineering, economics, biology, and 

computer science, among many others. In essence, it's 

about optimizing the use of limited resources, whether 

they are time, money, materials, or energy, to achieve 

specific goals. Optimization problems can vary widely in 

complexity, from simple linear programming tasks to 

intricate nonlinear, multi-objective, or combinatorial 

challenges, each demanding specialized techniques and 

approaches. Genetic algorithm (Wibowo and Jeong, 

2013), particle swarm optimization (Çaşka and Uysal, 

2021; Ilten, 2022b), response surface methodology (İlten, 

2021) etc. are frequently used optimization methods in 

literature. Particle Swarm Optimization (PSO) is a 

powerful and versatile optimization technique inspired by 

the collective behavior of birds and fish in nature. 

Introduced in the mid-1990s by James Kennedy and 

Russell Eberhart, PSO has since gained popularity in 

various fields, including engineering, computer science, 

finance, and many others. This bio-inspired algorithm is 

designed to solve complex optimization problems by 

simulating the social interaction and movement of a 

group of particles within a multidimensional search space 

(Kennedy and Eberhart, 1995). PSO's underlying concept 

draws parallels with the cooperative behavior observed in 

flocks of birds or schools of fish, where individuals adjust 

their positions based on their own experiences and the 

experiences of their peers to find the best solution 

collectively. In PSO, each potential solution, referred to as 

a "particle," explores the search space while being guided 

by its historical best position and the global best position 

found by the swarm. This dynamic interplay between 

exploration and exploitation allows PSO to efficiently 

locate optimal or near-optimal solutions in a wide range 

of problem domains (Poli et al., 2007). 

 

In this study, ADRC based synchronization is applied for a 

4D hyperchaotic system. PSO is used in optimization 

process of the controller coefficients. The performance of 

ADRC is tested under disturbances in simulation. The 

organization of the paper is given as follows. In section 2, 

a 4D hyperchaotic system equations are defined and 

phase portraits are presented. Synchronization process of 

chaotic systems and optimization of controllers are 

presented. In section 3, simulation results are illustrated. 

Finally, the discussion and conclusion are given in section 

5. 

 

2. Materials and Methods 

2.1 4D hyperchaotic system 

The equations of 4D hyperchaotic system is used in this 

study is given as follows (Iskakova et al., 2023): 

 

     

         

         

       

x t a y t z t

y t b x t x t z t c x t

z t d x t y t x t t

t x t e t y t



 

  

     

    

   

 (1) 

 

The primary and the secondary system equations can be 

defined as below according to Eq. (1). 
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    (a) x-y phase portraits.     (b) x-z phase portraits. 

 
     (c) x-ω phase portraits.        (d) y-z phase portraits. 

 
     (e) y-ω phase portraits.    (f) z-ω phase portraits. 

Figure 1. Phase portraits of different state variables. 

 

where the parameters are a=20, b=2, c=20, d=20 and 

e=0.2. Initial values for primary system is chosen as x1=5, 

y1=1, z1=1 and ω1=1. For secondary system the initial 

conditions are set to x2=-5, y2=-1, z2=-1 and ω2=-1. 

According to these parameters, the phase portraits are 

drawn as given in Figure 1. When the initial conditions are 

different, the two systems exhibit different behavior, as 

can be seen in the figures. 

2.2 Synchronization 

In applications such as secure data transfer, 

synchronization of the receiver (secondary) system to the 
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transmitter (primary) system is of vital importance. In 

order to achieve this, the calculation of the error values 

between the secondary system and the primary system 

must be minimized by means of a controller. 

 

In synchronization process of the secondary system, error 

functions (error system) are determined as follows from 

Eq. (2) and (3). 
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where      1 2xe t x t x t  ,      1 2ye t y t y t  , 

     1 2ze t z t z t  ,      1 2e t t t    .  

 

The secondary system is controlled to synchronize to the 

primary system. Secondary system model equation with 

controller signals ux(t), uy(t), uz(t) and uω(t) are given in the 

following equations. 
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The synchronization process block diagram of the system 

is presented in Figure 2. This model is prepared in the 

Matlab/Simulink (MathWorks, 2023) environment. 

 

In Figure 2, synchronizer (PID or ADRC) is used to minimize 

the errors between primary and secondary systems. 

Synchronizer can be activated via switch. Also, 

disturbance can be added to system via another switch to 

test the performance of the synchronizer. 

2.3 PID control 

PID is well-known method in the literature (Johnson and 

Moradi, 2005). It is used in this study to compare the 

performance of proposed method which is given in 

detailed in the next section. PID controller equation is 

presented in Eq. (6). 

        
0

t

P I d

d
u t K e t K e t dt K e t

dt
       (6) 

where e(t) is the error function. Kp, KI and KD are 

proportional, integral and derivative controller 

coefficients, respectively. 

 

Primary system
(reference)

+
-

0, 0, 0, 0

Synchronizer

Secondary system

x1, y1, z1, ω1

x2, y2, z2, ω2

ex, ey, ez, eω  

ux, uy, uz, uω 

Disturbance

Σ 

 

Figure 2. Block diagram of the system. 

 

2.4 Active disturbance rejection control 

Linear continuous-time error-based Active Disturbance 

Rejection Controller (ADRC) is used in this study (Lakomy 

et al., 2021). The system can be described as follows: 

 
         

     

ˆ ˆ ˆ, , , , ,n n

T
n

e t A e t b b e t u t d e e u t

y t c e t t

   
 

 

 (7) 

The extended state 
T

T 1nz e d      can be 

defined according to Eq. (7) as below. 

 
         

     

1 1 1

1

ˆˆ, , , , ,n n n

T
n

z t A z t b d z z u t d b ê t u t

y t c z t t

  



  

 
 (8) 

where b̂  is the estimate of input gain. The observation 

error      ˆz t z t z t    and the closed-loop control 

error e(t) can be defined as below. 

 

 
        

         

1 1 1 1 1 ,

1 .

n n n n n

n n n n

z t A l c z t b d t l w t

e t A b k e t k z t

      

  
 (9) 

In Eq. (9),  
T 1

1 1 2 1, ,..., n
n nl l l l 
    can be described 

with a single parameter ωo (ωo>0) as below. 



 Synchronization of a 4D Hyperchaotic System with Active Disturbance Rejection Control and…, ILTEN. 

470 

 
 

 
 21 !

 for 1,..., 1
! 1 !

i o

n
l i n

i n i



 

 
 (10) 

In Eq. (9),   1
1 2 ,..., n

n nk k k k    can be write with a 

single parameter ωc (ωc>0) as in Eq. (9). 
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i c

n
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 (11) 

In Eq (10) and (11), ωo is the observer bandwidth and ωc 

is the controller bandwidth. 

2.5 Optimization of the controllers 

PSO algorithm is used for optimization of the controller 

coefficients. The optimization process is presented in 

Figure 3. Minimization of integral time absolute error 

(ITAE) has been taken into account as the performance 

criteria of the optimization process. ITAE is calculated 

with summing of four error functions ex(t), ey(t), ez(t) and 

eω(t). This equation is given below. 

        
0

t

x y zITAE t e t e t e t e t dt     (12) 

The limits of controller coefficients for PID and ADRC are 

defined as Eq. (13) and (14). These limit values are 

determined as a result of preliminary studies. 

 

0.1 100
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ˆ0.8 1.2

1 150

1 20

o

c

b

ADRC 



  

 

  


 (14) 

At the end of optimization process, ITAE values are 

obtained for PID and ADRC are 32.9720 and 53.9200, 

respectively. These values are measured in the absence of 

disturbance and for initial conditions. Although PID looks 

better when looking at these values, it is explained in 

Section 4 that ADRC is much better when the 

performances under disturbance are examined. The 

optimum values of parameters obtained via PSO for PID 

and ADRC are given in Table 1. 
 

3. Results 

PID and ADRC controllers are compared without 

disturbance (Test-1) and with disturbance (Test-2) 

conditions. In Test-1, the system is started with 

uncontrolled until 5th second. 

Table 1. Optimum controller coefficients. 

Method Coefficient Value 

PID 

K
P
 97.7096 

K
ı
 0.0068 

K
D
 1.3128 

ADRC 

b̂  0.8495 

o  138.0050 

c  19.9958 

 

Initialize controller 
parameters

PSO algorithm 

Sufficient?

Synchronizer 
(ADRC)

4D hyperchaotic 
error system

ITAE evaluation

no

Save optimum 
parameters

yes

 
Figure 3. Optimization process. 

 

Then controller is activated. Test-1 runs for 7 seconds. PID 

and ADRC results are compared for each function (x, y, z, 

and ω) and illustrated in Figure 4 to Figure 7. When Figure 

4, 5, 6 and 7 are examined PID shows better results than 

ADRC such as low overshoot and shorter settling time. It 

should be noted that there was no disturbance in Test-1. 

The real performance of ADRC will be seen in Test-2. In 

Figure 4, settling times are measured are 5.142 s and 

5.286 s for PID and ADRC, respectively. In Figure 5, these 

values are observed as 5.091 s and 5.154 s. The settling 

times are 5.162 s and 5.396 s in Figure 6 for PID and ADRC. 

Finally, in Figure 7, these values are obtained as 5.092 s 

and 5.389 s. In Test-2, the system is started with no 

disturbance and uncontrolled. Starting from the 5th 

second, the controller is activated. Disturbances (dx, dy, dz 

and dω) are enter the system separately for each state (x, 

y, z, and ω). dx, dy, dz and dω are added between 8-9 s, 11-

12 s, 14-15 s and 17-18 s, respectively. Test-2 runs for 20 

seconds. PID and ADRC results are compared for each 

function (x, y, z, and ω) and illustrated in Figure 8 to Figure 

11. 
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(a) PID.              (b) ADRC. 

Figure 4. Synchronization of x(t) function with PID (a) and ADRC (b). 

 
(a) PID.               (b) ADRC. 

Figure 5. Synchronization of y(t) function with PID (a) and ADRC (b). 

 
(a) PID.               (b) ADRC. 

Figure 6. Synchronization of z(t) function with PID (a) and ADRC (b). 
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(a) PID.           (b) ADRC. 

Figure 7. Synchronization of ω(t) function with PID (a) and ADRC (b). 

 

 
(a) PID.            (b) ADRC. 

Figure 8. Synchronization of x(t) function with PID (a) and ADRC (b) under disturbance. 

 

 
(a) PID.            (b) ADRC. 

Figure 9. Synchronization of y(t) function with PID (a) and ADRC (b) under disturbance. 
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(a) PID.              (b) ADRC. 

Figure 10. Synchronization of z(t) function with PID (a) and ADRC (b) under disturbance. 

 

 
(a) PID.             (b) ADRC. 

Figure 11. Synchronization of ω(t) function with PID (a) and ADRC (b) under disturbance. 
 

When Figure 8, 9, 10 and 11 are examined, it is clearly 

seen that ADRC is not affected from any disturbances. On 

contrary to this, large deviations are observed in PID. PID 

is directly affected by disturbances and cannot maintain 

the synchronization of system. The only case where PID is 

not affected by disturbances is synchronization of the ω(t) 

function. This situation is clearly seen when the zoomed-

in sections in Figures 8, 9, 10 and 11 are examined. As a 

result of all these investigations, it is seen that the 

synchronization is maintained perfectly with the ADRC 

method. 

4. Discussion and Conclusion 

Synchronization of a 4D hyperchaotic system is studied in 

this paper. ADRC method is proposed as   synchronizer 

unit and compared with PID controller for prove the 

success. Both controller coefficients are optimized by 

using PSO algorithm. Synchronization system is modelled 

and tested in Matlab/Simulink environment. Optimum 

controllers are compared on this model under no-

disturbance and under disturbance tests, separately. In 

no-disturbance test, PID performs better for start-up 

process of synchronization. In other cases, especially 

under disturbance effects, ADRC performs much better. 

PID is directly affected by any disturbances and cannot 

maintain the synchronization. On the contrary to this, 

ADRC almost no affected any disturbances and maintains 

the synchronization perfectly. According to these results, 

it has been proven that the ADRC method is quite 

successful in synchronization of chaotic systems. When 

compared to synchronization studies in the literature, it is 

seen that ADRC exhibits similar performance to methods 

such as fuzzy (Zaqueros-Martinez et al., 2023), sliding-

mode (Mirzaei et al., 2023), feedback controller 

(Gokyildirim et al., 2023). Unlike these studies in the 

literature, the proposed method is also examined under 

disturbance effects, in this study. 
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