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Abstract 

 

In this study, it has been aimed to find the best ‘Seasonal Autoregressive Integrated 

Moving Average (SARIMA)’ model for monthly inflation rates for Turkish economy over the 

period 1995:01-2015:03. Before the model identification based on Box Jenkins methodology, 

HEGY monthly seasonal unit root test has been applied. The orders of seasonal differencing 

have been detected through OCSB and CH tests. Finally, ARIMA(1,1,1)(1,0,2)[12] with drift 

model chosen by using stepwise selection method and ARIMA(1,1,1)(2,0,0)[12] with drift 

model chosen by using non-stepwise selection have been compared. The results have shown 

that the former model is better as the best fitted SARIMA model.  
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Türkiye İçin Enflasyon Oranının Uygun Mevsimsel ARIMA Modeli 

İle Belirlenmesi 

Öz 

Bu çalışmada Türkiye’nin 1995:01-2015:03 dönemine ilişkin aylık enflasyon oranları 

için en iyi ‘Mevsimsel Otoregresif Bütünleşik Hareketli Ortalama (SARIMA)’ modelini 

bulmak amaçlanmıştır. Box Jenkins metodolojisine dayalı model tanımlamasından önce 

HEGY mevsimsel birim kök testi uygulanmıştır. Mevsimsel fark alma dereceleri OCSB ve CH 

testleri kullanılarak saptanmıştır. Son olarak, sırasıyla adımsal (stepwise) ve adımsal 

olmayan (non-stepwise) seçim yöntemleri kullanılarak seçilen sürüklenmeli 

ARIMA(1,1,1)(1,0,2)[12] ve ARIMA(1,1,1)(2,0,0)[12] modelleri karşılaştırılmıştır. Sonuçlar 

adımsal yöntem kullanılarak seçilen sürüklenmeli ARIMA(1,1,1)(1,0,2)[12] modelinin en iyi 

uyan SARIMA modelini belirlemede adımsal olmayan modele göre daha iyi olduğunu 

göstermiştir. 

Anahtar Kelimeler: Enflasyon, Box Jenkins, SARIMA, HEGY, OCSB, CH, Adımsal 

Seçim. 

JEL Sınıflandırma Kodları: C01, C22, C51, E31. 
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1. INTRODUCTION 

In terms of policy makers, it is of great importance to have a reliable inflation 

rate forecast. In this context, the most suitable model should be accessed using 

‘Seasonal Autoregressive Integrated Moving Average (SARIMA)’. Since SARIMA 

models reveal more effective results in terms of handling the seasonal component of 

the series apart from the non-seasonal one when compared to the traditional ARIMA 

models. In this application, it has been aimed to find the best model for monthly 

inflation rates and therefore monthly (seasonally unadjusted) consumer price index 

(CPI) data have been utilized for Turkish economy over the period 1995:01-2015:03. 

In modelling monthly inflation rates that are very crucial to design effective 

economic strategies, choosing a suitable seasonal ARIMA model which includes 

both seasonal and non-seasonal behaviours is not an easy task. Since such models 

give point to the recent past rather than distant past, primarily they are convenient 

for short term forecasting and this implies that long-term forecasts from ARIMA 

models are less reliable than short term forecasts (Aidoo, 2010: 3). 

The study of Canova and Hansen (1995) presents Lagrange Multiplier (LM) tests 

of the null hypothesis of no unit roots at seasonal frequencies denoting the presence 

of deterministic seasonality contrary to the tests of Dickey, Hasza and Fuller (DHF) 

(1984) and Hylleberg, Engle, Granger and Yoo (HEGY) (1990) tests dealing with 

the null of presence of seasonal unit roots. They generalize the Kwiatkowski, 

Phillips, Schmidt, and Shin (KPSS) (1992) test framework.  

Tam and Reinsel (1997) examine the locally best invariant unbiased (LBIU) and 

point optimal invariant test procedures for a unit root in the seasonal moving average 

(SMA) operator for SARIMA and make use of the monthly non-agricultural industry 

employment series for males age 16-19 modelled by Hillmer, Bell and Tiao (1983). 

The results for conducted simulations have revealed that for this series, seasonality 

is stochastic and therefore seasonal differencing is appropriate. They also apply their 

tests to different types of seasonal time series data and find some of these series to 

have deterministic seasonality.  
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In the study by Lim and McAleer (2000), the presence of stochastic seasonality 

is examined to clarify the nonstationary quarterly international tourist arrivals from 

Hong Kong and Singapore to Australia from 1975:Q1 to 1996:Q4 using HEGY 

(1990) procedure. Since the presence of seasonal unit roots gives an insight into a 

varying seasonal pattern that is against a constant seasonal pattern, the Box Jenkins 

SARIMA process is possible to be a more suitable model for tourist arrivals rather 

than a deterministic seasonal model with seasonal dummy variables.  

Cosar (2006) has tried to examine the seasonal properties of the Turkish CPI 

through Beaulieu and Miron’s (1993) extension of the classical HEGY test 

developed by Hylleberg et al. (1990) and the LM-type CH seasonal unit root test 

procedures with the aim to specify the seasonality accurately in econometric models. 

In Cosar’s (2006) study, there has been an evidence of both deterministic and 

nonstationary stochastic seasonality in the CPI series of Turkey.  

In their paper, Chang and Liao (2010) have aimed to forecast the monthly 

outbound tourism departures of three major destinations from Taiwan to Hong Kong, 

Japan and U.S.A. respectively using the SARIMA model.  

Saz (2011) examines the efficacy of SARIMA models for forecasting Turkish 

inflation rates from 2003 to 2009 and presents a methodological approach for a 

combination of a systematic SARIMA forecasting structure and the stepwise 

selection procedure of the Hyndman-Khandakar (HK) algorithm. This combination 

is expressed to give rise to choosing a best single SARIMA model which is 

SARIMA(0,0,0)(1,1,1) model with one degree of seasonal integration, one seasonal 

autoregressive (AR) and one seasonal moving average (MA) part. According to a 

structural break analysis, the Turkish inflation rates have been found to display a 

range of structural breaks with the latest being in mid-2003 and stochastic nature of 

Turkish inflation has been found to outweigh its deterministic nature. 

Our study has mainly focused on searching for the best-fitted SARIMA model 

for the monthly inflation rates in order to provide the best forecast. Therefore, 

following the Box-Jenkins approach, in the application part first model identification 
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and estimation of parameters will be presented. Subsequent to this, diagnostic 

checking results based on the residuals of the possible model will be given place in 

order to make certain about the white-noise characteristic of residuals which 

becomes a vital assumption for a good ARIMA model. 

The rest of this paper has been organized as follows: Section 2 provides the 

background for the analytical approach to SARIMA models, Beaulieu and Miron’s 

(1993) extension of the classical HEGY test, OCSB and CH test; section 3 gives the 

information about the data set and discussions on the empirical results. Finally, 

section 4 presents the conclusions. 

2. THEORETICAL BACKGROUND 

2.1. Seasonal ARIMA Models (SARIMA)                          

The characterization of seasonal series occurs by a strong serial correlation at the 

seasonal lag. As known, the classical decomposition of the time series consists of a 

trend component, a seasonal component and a random noise component. But, in 

practice it may not be logical to assume that the seasonality component repeats itself 

exactly in the same way cycle after cycle. SARIMA models allow for randomness 

in the seasonal pattern from one cycle to the next (Brockwell and Davis, 2006: 320). 

Box and Jenkins (1970) present an extension of the ARIMA model in order to 

take seasonal effects into consideration. At the core of idea, trying to adjust a cyclical 

effect takes place for adding this seasonal component. For example, in the case of 

monthly data, the observation  may depend in part on  accounting for an 

annual effect. In the same manner, for daily data, the dependence may be realized 

through  representing a weekly effect. Coping with these dependencies in order 

to remove the seasonal effect in question may be possible via differencing the data. 

However, one can also specify AR or MA relationships at the seasonal interval in 

question. For this case, Box and Jenkins (1970) define a general multiplicative 

SARIMA model shown as ARIMA x , where the lower-case 

letters  indicate the nonseasonal orders and the upper-case letters  

ty 12ty

7ty

),,( qdp sQDP ),,(

qdp ,, QDP ,,



 

 

 

 

 

 

   

Dokuz Eylül Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi  
                                    Cilt:32, Sayı:2, Yıl:2017, ss. 143-182 

147 

 

indicate the seasonal orders of the process with period s (that is, s is the number of 

observations per year). The parentheses mean that the seasonal and nonseasonal 

elements are multiplied (Hamaker and Dolan, 2009: 198-199; Pankratz, 1983: 281). 

Before giving a clear definition for SARIMA, assume that tX   

,........)2,1,0( t  
is an ARMA ),( qp  process if }{ tX  is stationary and if for 

every t, 

qtqttptptt ZZZXXX    .................... 1111                 (1) 

where  ~ . (1) can be written symbolically as  

tt ZLXL )()(   ,  ,........)2,1,0( t                                                         
(2) 

where  and  are the  and  degree polynomials  

p
pzzz   .........1)( 1                                                                          (3) 

and  

q
qzzz   .........1)( 1                                                                          (4) 

and L is the backward shift operator defined by jtt
j XXL  ,  

,........2,1,0 j . These  and   polynomials are mentioned as the AR and MA 

polynomials respectively of the difference equations (2) (Brockwell and Davis, 

2006: 78). If we fit an ARMA ),( qp  model tt ZLYL )()(    to the differenced 

series t
S

t XLY )1(  , then the model for the original series becomes 

tt
S ZLXLL )()1)((   . This is a special case of the general SARIMA model 

which will be defined as follows: 

Definition:  If d and D are nonnegative integers, then { } is a seasonal ARIMA 

x  process with period s if the differenced series 

t
DSd

t XLLY )1()1(   is a causal ARMA process defined      

}{ tZ ),0( 2WN

  thp thq



tX

),,( qdp sQDP ),,(
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t
S

t
S ZLLYLL )()()()(   , }{ tZ ~ ),0( 2WN                                      (5) 

where 
P

Pzzz  .........1)( 1  (seasonal AR(P) characteristic 

polynomial), 
Q

Qzzz  .........1)( 1  (seasonal MA(Q) characteristic 

polynomial)  with )(z  and )(z  expressed in (3) and (4) respectively (Brockwell 

and Davis, 2002: 203). On the other hand, a more general multiplicative SARIMA 

model can be expressed by adding a constant term  to take the case of a 

deterministic trend into consideration as follows: 

t
S

t
S ZLLYLL )()()()(                                                                    (6) 

and substituting t
dD

St
DSd

t XXLLY  )1()1(  into (6), it becomes 

t
S

t
dD

S
S ZLLXLL )()()()(                                           (7)  

(Shumway and Stoffer, 2011: 157). 

As seen in the definition given above, derivation of }{ tY comes from the original 

series }{ tX  using both simple differencing (in order to remove trend) and seasonal 

differencing 
S

S L 1  to remove seasonality. For instance, when 1Dd  and 

12s , then tY  becomes 

1121212  tttt XXXY      )()( 13112   tttt XXXX         (8) 

 Now take a SARIMA model of order x . Then this model can be 

written in the following equation: 

tt ZLYL )1()1( 12                                                                                    (9) 

where tt XY 12 . Then we find 

1213112 )(   tttttt ZZXXXX                                                      (10) 



)0,0,1( 12)1,1,0(
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so that  depends on  and  as well as the innovation at time 

(Chatfield, 1996: 60). 

Now let us take an ARIMA x  process with a periodicity of length 

12 (since, s=12). In this example, it is obvious that tX  does not require seasonal and 

nonseasonal differencing at all since 0d  and 0D . On the other hand, the 

seasonal part of the process is composed of one AR )1( P and one MA )1( Q

component at lag 12. In addition, there is a nonseasonal AR term at lag 1 )1( p . 

The multiplication of the two AR operators in the lag operator form can be expressed 

as  

tt ZLXLL )1()1)(1( 12
1

12
11                                                          (11)  

(Pankratz, 1983: 281). 

In identifying SARIMA model, the first task is to find values d  and D which 

reduce the series to stationarity and remove most of the seasonality. Then, we need 

to assess the values of and  by examining the sample autocorrelation 

function (ACF) and partial autocorrelation function (PACF) of the differenced series
 

at lags which are multiples of s and choosing a SARIMA model in which ACF and 

PACF have a similar shape. Ultimately, the model parameters may be estimated 

through an appropriate iterative procedure. For details, see Box and Jenkins (1970, 

chap. 9) (Chatfield, 1996,: 60-61) (all AR and MA polynomial representations have 

been taken from Brockwell and Davis, 2006: 78). 

2.1.1. Stationarity and Invertibility Conditions 

Representing a model in a multiplicative form is a big convenience in terms of 

expressing the seasonal and nonseasonal components separately and controlling the 

stationarity and invertibility conditions. For instance, take an ARIMA x

 model and express it in a lag operator form as follows:  

tX 121,  tt XX 13tX

)12( t

)0,0,1( 12)1,0,1(

qPp ,, Q

)1,0,2(

s)2,0,1(
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t
ss

t
s ZLLLXLLL )1)(1()1)(1( 1

2
211

2
21                   (12)  

The stationary requirement applies only to the AR coefficients. The nonseasonal 

part of (12) has the same stationarity conditions as for an )2(AR :   

 and . Now we need to apply a seperate stationary condition 

for the AR seasonal part. It is the same as for a nonseasonal AR(1) model, except in 

this case we have a seasonal sAR )1( component; so the condition becomes 11 

. 

As in the case of stationarity, we need to consider invertibility condition which 

applies only to the MA part of (12) for nonseasonal and seasonal components 

separately. For the nonseasonal part, the condition is . The conditions on the 

seasonal part are the same as for a nonseasonal MA(2) model, except in this case 

there exists an sMA )2( component. Therefore the joint conditions are given as 

12  ,  112   and 112   (Pankratz, 1983: 285). (AR and MA 

polynomial representations have been taken from Brockwell and Davis, 2006: 78). 

2.1.2. The Expanded Model 

It should be noted that all multiplicative SARIMA models can be telescoped into 

an ordinary ARMA model in the variable 

t
dD

S

def

t XY                                                                                                 (13) 

For instance, consider that the series 
T
ttx 1}{   follows a SARIMA x

 or ARIMA x 12)1,1,0(  model. For this process, we have 

tt ZLLXLL )1)(1()1)(1( 12
11

12                                                    (14) 

and it becomes 

,12 

,112  112 

11 

),( qp

)1,1,0(

)1,1,0,12( )1,1,0(
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tt ZLLLY )1( 13
11

12
11                                                           (15) 

where . Hence, it can be said that this multiplicative 

SARIMA model has an ARMA (0,13) representation where only the coefficients 1

, 112 
def

  and 1113 
def

 are not zero and all other coefficients of the MA 

polynomial are equal to zero. So, if the model in question is SARIMA x

given in (14), only the two coefficients which are  and 1  have to be 

estimated. However, for the ARMA (0,13), instead we have to estimate the three 

coefficients which are ,  and . Therefore, it is apparent that SARIMA 

models take a parsimonious model structure into account and a model specification 

such as (15) is called an expanded model. In addition, we can say that only an 

expanded multiplicative model can be estimated directly (Chen, Schulz and Stephan, 

2003: 233-234).  

2.1.3. Theoretical ACFs and PACFs for Seasonal Processes  

In SARIMA models, estimated acfs and pacfs display the same expected 

behaviours as in the structure of nonseasonal models. For seasonal time series data, 

observations s time periods apart  have characteristics 

in common. So, observations s periods apart are expected to be correlated and in this 

manner, acfs and pacfs for seasonal series should have nonzero coefficients at one 

or more multiples of lag s . If we observe nonseasonal and purely 

seasonal acfs and pacfs, it is seen that the coefficients appearing at lags 1,2,…. in the 

former appear at lags  in the latter.  

This similarity between nonseasonal and seasonal acfs and pacfs makes the 

seasonal analysis simpler. So, having knowledge of nonseasonal acfs and pacfs helps 

give a description of identical patterns occurring at multiples of lag s (Pankratz, 

1983: 270-271). For more details, see Box and Jenkins (1976, chap. 9). 

 

tt XLLY )1)(1( 12 

)1,1,0(

)1,1,0,12( 1

1 12 13

,.....),,,,( 22 ststststt zzzzz 

,......)3,2,( sss

,......3,2, sss
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2.2. Testing for Seasonal Unit Roots in Monthly Data 

Beaulieu and Miron (1992) make an extension of HEGY testing procedure for 

monthly data. )(* L  is a polynomial associated with roots that are outside the unit 

circle and it can be expressed as                                                    




 
12

1
1,13

*)(
k

ttkkt yyL                                                                           (16) 

where,  

tt yLLLLLLLLLLLy )1( 111098765432
,1           (17) 

tt yLLLLLLLLLLLy )1( 111098765432
,2         (18) 

tt yLLLLLLy )( 119753
,3                                                          (19) 

tt yLLLLLy )1( 108642
,4                                                           (20) 

tt yLLLLLLLLLLLy )22221(
2

1 111098765432
,5       (21) 

tt yLLLLLLLy )1(
2

3 1097643
,6                                       (22) 

tt yLLLLLLLLLLLy )22221(
2

1 111098765432
,7         (23) 

tt yLLLLLLLy )1(
2

3 1097643
,8                                    (24) 

tt yLLLLLLLLLy )233233(
2

1 1110976543
,9             (25) 
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tt yLLLLLLLLLy )3233231(
2

1 109876432
,10           (26)    

tt yLLLLLLLLLy )233233(
2

1 1110976543
,11         (27) 

tt yLLLLLLLLLy )3233231(
2

1 109876432
,12         (28) 

tt yLy )1( 12
,13                                                                                             (29) 

(Beaulieu and Miron, 1992: 2-4). 

With these transformations ( ,iy s) of ty , the seasonal unit roots are excluded at 

given frequencies while they are preserved at remaining frequencies. To give an 

example, consider the ty1  transformation. While it eliminates the seasonal unit roots, 

it preserves the long-run or zero frequency unit root. In table 1, the outline of long 

run and seasonal frequencies has been presented: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

M.ÖZMEN – S. ŞANLI 

154 

 

Table 1.  Long  Run  and  Seasonal  Frequencies  for  Seasonal  Unit  Root Tests in   Monthly 

Data 

Frequency Period Cycles/year Root Filter Tested 

hypothesis 

:0H Unit 

Root 

0 

Long run 

 0 1 )1( L  01   

6

11
,

6


 

Annual 

12;1.09  

1; 11 
)3(

2

1
i  )31( 2LL  01211   

3

5
,

3


 

Semiannual 

 

6; 1.2 

 

2; 10 
)31(

2

1
i  

)1( 2LL  087   

2

3
,

2


 4; 

3

4
 

 

3; 9 

 

i  

)1( 2L  043   

3

4
,

3

2 
 

Quarterly 

3; 1.5  

4; 8 
)31(

2

1
i  )1( 2LL  065   

6

7
,

6

5 
 

 

2.4; 1.7 

 

5; 7 
)3(

2

1
i  )31( 2LL  0109   

  

Bimonthly 

2 6 -1 )1( L  02   

Note. The information on first five columns have been obtained from Dıaz-    Emparanza & 

López-de-Lacalle (2006).  

If 2  through 12
 are significantly different from zero, there will be no seasonal 

unit roots and the pattern that the data display becomes deterministic or constant 

seasonal. Therefore, in this situation the dummy variable representation can be 

applied for modelling this pattern. The implication of the statement just given is that 

if there are seasonal unit roots, the corresponding i  are zero. Due to the fact that 

pairs of complex unit root are conjugates, these roots will exist only in case pairs of 
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s'  are jointly equal to zero. If 1  through 12
 are all unequal to zero, we 

experience a stationary seasonal pattern and seasonal dummy variables can be used 

to model such a pattern. Also, when the coefficient for a given   is statistically not 

different from zero, it can be said that data have a varying seasonal pattern. If 
01 

, we cannot reject the presence of root 1 with long-run frequency and if all i  are 

equal to zero, it becomes suitable to apply the )1( 12L  filter. If only some pairs of 

s'  are zero, the relevant operators can be used. In Abraham and Box (1978), it is 

exemplified that sometimes these operators may be adequate. (Franses, 1991: 101; 

Maddala and Kim, 1998: 370; Sørensen, 2001: 77 ).  

2.3. OCSB Test                                               

Osborn, Chui, Smith and Birchenhall (OCSB) (1988) have modified the Hasza 

and Fuller (1982) test framework to detect the presence of multiplicative differencing 

filter s1 . That is, the OCSB test investigates whether )1( L  or )1( sL

operators or both of them or none of them should be applied to data. The OCSB 

regression model in the original form is expressed as  

tsttsts yyy    12111                                                         (30)  

and it can be generalized with deterministic components as follows: 

tsttstts yyyL    12111)(                                        (31) 

where )(L is an AR polynomial (lag polynomial with roots outside the unit circle), 

)1(),1( 1 LLs
s   and  

 









1

1

1

1
,0,0

S

s

S

s
tsstsst tDtD                                                         (32) 

Here, t is a deterministic trend. In the original study, the seasonal trend is not 

given place in t  i.e. 0s  for s. However, Franses and Koehler (1998) 
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suggest the model (31) with the   parameters not being equal to zero in t  so that 

the test becomes applicable to ty  series showing increasing seasonal variation. In 

order to find out which filter is suitable for ty , the significances of 1  and 2  are 

tested. When both 1  and 2  are equal to zero ( 1 02  ), using s1  filter is 

suitable. When 01   and 02  , 1  filter should be selected; when 01   and 

02  , s  filter is suitable. If both 1  and 2  are unequal to zero  

( 1 02  ), in that case no differencing filter is required (Franses, 1998: 563; 

Maddala and Kim, 1998: 366; Zhang, 2008: 11; Platon, 2010: 2-3). 

 

2.4. Canova-Hansen (CH) Test    

The study of Canova and Hansen (1995) presents Lagrange Multiplier (LM) tests 

of the null hypothesis of no unit roots at seasonal frequencies against the alternative 

of a unit root at either a specific seasonal frequency or a set of selected seasonal 

frequencies. So the test statistics of CH are derived from the LM principle that 

necessitates only the estimation of the model under the null using least square 

techniques and they are fairly simple functions of the residuals. These tests are also 

a framework for testing seasonal stability. CH tests complement the tests of Dickey 

et al. (1984) and Hylleberg et al. (1990) that examine the null of seasonal unit roots 

at one or more seasonal frequencies. So, it is clear that contrary to these seasonal unit 

root tests, the null hypothesis of CH test is that the process is stationary (that is, 

stationary seasonality rather than nonstationary seasonality). Here the rejection of 

the null hypothesis would imply the nonstationarity of the data. Although the null of 

CH test is stationary seasonality, for simplicity they refer to their tests as seasonal 

unit root tests. Since seasonal intercepts stand for the deterministic components of 

seasonality and they are assumed to be constant over the sample, under the null 

hypothesis of stationarity the tests by Canova and Hansen can also be introduced as 

the tests for constancy of seasonal intercepts over time (Canova and Hansen, 1995: 

237-238).  
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3. APPLICATION 

In this application, it has been aimed to find the best model for monthly inflation 

rates and therefore monthly (not seasonally adjusted) CPI data have been utilized for 

Turkish economy over the period 1995:01-2015:03 (Index 2010=1.00). Data have 

been obtained from Organization for Economic Co-operation and Development. 

This application has been carried out at the R Project for Statistical Computing-

version 3.1.3. by using “forecast” and “uroot” packages. Since inflation is measured 

by the percentage change in CPI, inflation rates have been calculated by using the 

following transformation:  

100.
1

1






t

tt

CPI

CPICPI
INF                                                                           (33) 

where INF denotes inflation rate,  denotes consumer price index at time t 

and  denotes consumer price index at time t-1.  

The graph of inflation data has been presented in Figure 1: 

 

Figure 1. Graph of Inflation Series against Time  

 
It is apparent from Figure 1 that inflation data are nonstationary with a non-

constant mean and unsteady variance and follow some seasonal pattern. For this 

reason, first of all the series should be checked for seasonal unit roots at all seasonal 

frequencies and if INF series includes all seasonal unit roots, seasonal differencing 
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operator has to be applied to this series. If INF series has seasonal unit roots only at 

some frequencies, filters corresponding to available unit roots at each given 

frequency have to be applied. Briefly, before constructing a suitable ARIMA model 

for our seasonal series, we should make a data transformation in a way to make the 

series stationary by taking Box-Jenkins methodology into consideration. 

Before the model identification, in order to detect at which frequencies INF series 

has unit roots and to decide about the appropriate order of differencing filter, we 

should recourse to HEGY monthly seasonal unit root test apart from CH test. The 

null hypotheses differ for CH and HEGY tests. In the former, the null hypothesis 

implies the stationarity case at all seasonal cycles while the latter implies the 

presence of seasonal unit root.  

Figure 2 and Figure 3 show the ACF and PACF of the original inflation series for 

maximum lag numbers of 48 respectively. When looked at the correlogram of series 

in Figure 2, the autocorrelation coefficient is seen to decline very slowly towards 

zero with increasing lag length implying that the series is nonstationary. On the other 

hand, seasonal lags (12 24, 36,48) are clear to be significant. Thus, the presence of 

any seasonal unit root other than a zero (long-run) frequency unit root has to be 

detected.  

 

Figure 2. ACF of Inflation Series (for Lag.Max=48) 
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Figure 3. PACF of Inflation Series (for Lag.Max=48) 

 
Table 1 has presented long-run and seasonal frequencies for monthly series in 

details. In this study, the monthly seasonal unit root analysis has been carried out by 

using three different lag order selection methods. First, significant lags have been 

added to the four deterministic regressions [with only constant (C); constant and 

trend (C, T); constant and dummies (C, D); constant, trend and dummies (C, T, D)] 

and one regression with no deterministic components (None) in order to make certain 

about that the residuals are white noise (that is, insignificant lags have been removed 

until all selected lags become significant). These test results have been given in Table 

2. As mentioned before, the first two hypotheses which are   and  are 

tested by t-test and the other five joint hypotheses which are , 

, ,  and  are tested by F-test. 
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Table 2.  HEGY Monthly Seasonal  Unit Root Test Results for Inflation Series (by Using 

Significant Lags)  

 

Auxiliary 

Regression 

Null 

Hypotheses 

Seasonal 

Frequency 

Estimates 

for the 

Model with 

Constant 

 

Estimates 

for the 

Model 

with 

Constant 

and Trend 

Estimates 

for the 

Model 

with 

Constant 

and 

Dummies 

Estimates 

for the 

Model 

with 

Constant, 

Trend and 

Dummies 

Estimates 

for the 

Model with 

None 

 0 -1.537* -0.288* -1.294* -1.548* -2.762 

  -2.348 -2.313 -3.588 -3.608 -2.347 

  6.966 6.761 20.174 20.222 6.960 

  4.220 4.008 14.163 14.297 4.208 

  1.675* 1.606* 9.036 9.132 1.668* 

  12.656 12.342 22.248 22.352 12.662 

  5.461 5.236 14.104 14.524 5.435 

Note. * denotes insignificant estimates (*p>.05) at 5% significance level.                                                 

For HEGY test applications, critical values have  been  obtained   from  Franses  

and  Hobjin  (1997)  for   S=12  and  for   5% significance level (see pp. 29-33) for  

20 years (that is, 240 observations). 

When looked at Table 2, the results for the hypothesis  have revealed that 

the presence of the zero (non-seasonal) frequency unit root is accepted depending on 

the non-rejection of the null hypothesis  at all deterministic models (except 

none model). Thus, original INF series is not stationary at zero frequency. Having 

examined the other hypotheses, all other hypotheses implying the presence of a unit 

root at seasonal frequency except the hypothesis  are seen to be rejected 

for all deterministic models and therefore it is concluded that there are no seasonal 

unit roots at  and  frequencies. In other saying, there are 
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conjugate complex seasonal unit roots only at  frequencies corresponding to (2, 

10) cycles per year for “Constant”, “Constant and Trend” and “None” models. From 

this point of view, seasonal cycles can be said to follow mostly a deterministic 

structure.   

Table 3. HEGY  Monthly Seasonal  Unit Root Test Results for Inflation Series  (by Using 

AIC for Lags) 

Auxiliary 

Regression 

Null 

Hypotheses 

Seasonal 

Frequency 

Estimates 

for the 

Model 

with 

Constant 

 

Estimates 

for the 

Model 

with 

Constant 

and Trend 

Estimates 

for the 

Model 

with 

Constant 

and 

Dummies 

Estimates 

for the 

Model with 

Constant, 

Trend and 

Dummies 

Estimates 

for the 

Model 

with None 

 0 -1.546* -0.579* -1.417* -0.935* -2.542 

  -2.541 -2.515 -2.978 -2.991 -2.534 

  4.938 4.905 18.391 18.360 4.937 

  3.373 3.310 7.305 7.267 3.359 

  1.212* 1.197* 5.727* 5.756* 1.207* 

  14.009 13.633 20.506 20.451 13.975 

  3.897 3.842 13.631 13.624 3.860 

 Note. * denotes insignificant estimates (*p>.05) at 5% significance level. 

Table 3 presents monthly HEGY seasonal unit root test results based on AIC. The 

results are almost the same as Table 2 with regard to statistical significance: Since 

the hypothesis  could not be rejected at 5% significance level (meaning that 

non-rejection of the presence of root ), the presence of the zero frequency unit 

root has been accepted. Thus, inflation series is nonstationary and seasonal unit roots 

have been detected only at  frequencies for all five models given in Table 3.  
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Table 4. HEGY  Monthly Seasonal Unit Root Test Results for Inflation Series  (by            Using 

BIC for Lags) 

Auxiliary 

Regression 

Null 

Hypotheses 

Seasonal 

Frequency 

Estimates 

for the 

Model 

with 

Constant 

 

Estimates 

for the 

Model 

with 

Constant 

and Trend 

Estimates 

for the 

Model 

with 

Constant 

and 

Dummies 

Estimates 

for the 

Model with 

Constant, 

Trend and 

Dummies 

Estimates 

for the 

Model with 

None 

 0 -1.537* -0.288* -1.499* -1.315* -2.762 

  -2.348 -2.313 -3.232 -3.278 -2.347 

  6.966 6.761 15.593 15.816 6.960 

  4.220 4.008 9.53 9.773 4.208 

  1.675* 1.606* 6.756 6.956 1.668* 

  12.656 12.342 17.772 17.988 12.662 

  5.461 5.236 10.906 11.126 5.435 

Note. * denotes insignificant estimates (*p>.05) at 5% significance level.    

Table 4 considers the results of monthly HEGY seasonal unit root test based on 

BIC (Bayesian Information Criterion). Table 4 and Table 2 results do not differ. In 

conclusion, three methods discussed in terms of different lag criteria have revealed 

only the presence of conjugate complex seasonal unit roots at  frequencies 

corresponding to (2, 10) cycles per year. The presence of all other seasonal unit roots 

with  and has been rejected and it has been concluded that 

seasonal cycles mostly display a deterministic structure. Therefore, there is no need 

to take the seasonal difference of INF series. However, since the presence of zero 

frequency unit root cannot be denied; we have to take the first difference of INF 

series. In that case, INF series is not seasonally integrated and thus applying the 

seasonal difference filter  to the series is not required. Beaulieu and Miron 

(1992: 18) have also explained more clearly why applying  filter to the 
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series is not required in that way: “The appropriateness of applying the filter 

to a series with a seasonal component, as advocated by Box and Jenkins 

(1970) depends on the series being integrated at zero and all of the seasonal 

frequencies”.  Briefly, this explanation holds since the presence of all seasonal unit 

roots has not been accepted and there is weak evidence of seasonal unit roots on 

monthly series. 

Table 5. CH Test Results for Inflation Series 

After applying to HEGY test, now Table 5 presents CH test results in order to 

make inference about the seasonal behaviour of INF series. Contrary to the HEGY 

test, the null hypothesis of CH is the stationarity of all seasonal cycles while the 

alternative hypothesis is the presence of seasonal unit root (indicating to the presence 

of stochastic seasonality). According to the results, since calculated L-statistic 

(2.005) is smaller than not only 5% critical value (2.75) but also 1% (3.27) and 10% 

(2.49) critical values, we fail to reject the null hypothesis saying that seasonal pattern 

is deterministic. Therefore it can be said that the result of CH test is consistent with 

the result of HEGY test and once again there is no need for seasonal differencing 

operator. However, there is one important thing that since the presence of only 

conjugate complex seasonal unit roots with  frequencies has been determined 

with the adoption of the hypothesis , INF series should be transformed 

by the necessary filters corresponding to these frequencies. Filters corresponding to 

all frequencies have been presented in Table 1. Therefore, the necessary filter 

corresponding to frequencies has been expressed as . On the other 

hand, as expressed before, since the series includes zero (non-seasonal) frequency 
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unit root, the first difference operator  should also be applied. So, the 

necessary transformation that will be made in INF series will be 

. More precisely, if the new series to be obtained is called “ ” (meaning filtered 

inflation),  will be formed as follows: 

))2()1(()1(inf 2  INFINFINFLLf     

)3()2(2)1(2  INFINFINFINF
                                          (34) 

The ACF function of the “ ” series obtained after this transformation given 

above for maximum lags of 48 is given in Figure 4 and PACF function is given in 

Figure 5: 

 

Figure 4. ACF of Filtered Inflation Series ( ) for Lag.Max=48 

)1( L

)1)(1( 2LLL 

inff

inff

inff

0 10 20 30 40

-0
.2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Series  finf

inff



 

 

 

 

 

 

   

Dokuz Eylül Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi  
                                    Cilt:32, Sayı:2, Yıl:2017, ss. 143-182 

165 

 

 

Figure 5. PACF of Filtered Inflation Series ( ) for Lag.Max=48 

As seen in Figure 4 and Figure 5, the significant spikes at lag 1 in both ACF and 

PACF suggest a non-seasonal MA(1) and non-seasonal AR(1) components. When 

looked at the PACF correlogram, there has been found no significant spikes at 

seasonal lags 12, 24, 36, 48. However, 6th  lag is seen to be significant. Therefore, it 

can be said again that series follows a semi-annual seasonal pattern (corresponding 

to the filter  and thus to the hypothesis ) as consistent with 

monthly seasonal unit root results and since there are no significant spikes at seasonal 

lags in PACF, once again it can be said that seasonal differencing is not required for 

the series. 

“Forecast” package in R software offers us a very practical formula concerned 

with determining the order of both seasonal differencing and first-degree 

differencing benefiting from OCSB and CH tests. By running the following codes, 

we can compare the results that will obtained here with the results described above: 
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Table 6. R Codes and Outputs for Determining the Order of Seasonal Differencing              by 

Using OCSB and CH Tests 

R Codes and Outputs 

>nsdiffs(INF,12,test=”ocsb”) 

[1] 0 

>nsdiffs(INF,12,test=”ch”) 

[1] 0 

Note. 1The function “nsdiffs” estimates the order of seasonal differencing in a series to satisfy 

stationarity condition. Here “12” indicates  the length of seasonal period of the series and  

“test”  expresses the kind of seasonal unit root test to be applied (OCSB or CH).  
2For more information, see (Hyndman, 2015). 
3For  OCSB  test, the  null hypothesis  is Seasonal unit root exists while Seasonal 

cycles are stationary for CH test. 

As seen in Table 6, the result “[1] 0” reveals the number of seasonal differencing 

for inflation series as “0 (zero)” as a result of carrying out both OCSB test and CH 

test. Thus, there has been no need to take any seasonal difference. These results show 

consistency with the results expressed before. Now with the codes given in Table 7, 

let us verify that original INF series is not stationary at zero frequency: 

Table 7. R Codes and Outputs for Determining the Number of First Differences by Using 

KPSS and ADF Tests 

R Codes and Outputs 

>ndiffs(INF,test=”kpss”) 

[1] 1 

>ndiffs(INF,test=”adf”) 

[1] 1 

Note. 1 The  function  “ndiffs”   estimates  the  number  of  first  differences  in  order  to  

make  the  series stationary.  
2 For more information, see  (Hyndman, 2015). 
3For  KPSS test,  the  null  hypothesis  implies  the stationarity of series (or the absence of 

unit root) while the null of ADF test implies the non-stationarity case of series in interest at 

the non-seasonal level (or the presence of unit root). 

The results of practical codes that take place in Table 7 tell us that INF series 

should be first-degree differenced.  

Another simple method for determining the optimal order of differencing comes 

from Box-Jenkins rule of thumb: The optimum order of differencing is the one with 
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the smallest standard deviation (Akuffo and Ampaw, 2013: 15). In order to detect 

the optimal order, standard deviations corresponding to different orders of 

differencing are given in Table 8: 

Table 8. Standard Deviations for  Detecting  the Optimal Order of  Differencing by Box-

Jenkins Rule of Thumb 

Order of Differencing Non First Second Third 

Standard Deviations 2.243578 1.492247 2.274733 3.806330 

Hence, the minimum standard deviation is realized in first-degree differenced 

form with a value of 1.492247. Hence, once again we have verified the optimum 

order as 1.  

Now after the orders of seasonal and non-seasonal differences are determined in 

order to satisfy the stationarity condition of original series (since the series should 

be stationary for SARIMA modelling), we should determine AR, SAR, MA and 

SMA (seasonal moving average) orders to construct the best model.  

In the model identification, possible best models have been tried to be discovered 

by “auto.arima” function in “forecast” package of R software. The method for 

selecting the best-fitted model is based on choosing AIC, AICc (Corrected Akaike 

Information Criterion) and BIC with minimum values. Mostly, the model that 

provides minimum AIC (or AICc) rather than BIC is a candidate to be selected as 

the best-fitted one. In Table 9, suggested ARIMA models by utilizing from OCSB 

and ADF tests have been presented with AICc and AIC information criteria: 
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Table 9.  AICc  and  AIC Values  for  Suggested  ARIMA Models of INF Series by Using 

Stepwise Selection 

Suggested ARIMA models AICc AIC 

ARIMA(2,1,2)(1,0,1)[12] with drift Inf Inf 

ARIMA(0,1,0) with drift 2560.113 2560.063 

ARIMA(1,1,0)(1,0,0)[12] with drift 2494.328 2494.158 

ARIMA(0,1,1)(0,0,1)[12] with drift 2466.34 2466.17 

ARIMA(0,1,0) 2558.086 2558.069 

ARIMA(0,1,1)(1,0,1)[12] with drift Inf Inf 

ARIMA(0,1,1) with drift 2495.07 2494.969 

ARIMA(0,1,1)(0,0,2)[12] with drift 2449.736 2449.481 

ARIMA(1,1,1)(0,0,2)[12] with drift 2440.443 2440.084 

ARIMA(1,1,0)(0,0,2)[12] with drift 2505.766 2505.511 

ARIMA(1,1,2)(0,0,2)[12] with drift 2441.56 2441.079 

ARIMA(0,1,0)(0,0,2)[12] with drift 2532.184 2532.015 

ARIMA(2,1,2)(0,0,2)[12] with drift 2444.814 2444.194 

ARIMA(1,1,1)(0,0,2)[12] 2440.654 2440.398 

ARIMA(1,1,1)(1,0,2)[12] with drift 2405.964 2405.484 

ARIMA(1,1,1)(1,0,1)[12] with drift Inf Inf 

ARIMA(1,1,1)(0,0,1)[12] with drift 2453.309 2453.054 

Suggested ARIMA models AICc AIC 

ARIMA(0,1,1)(1,0,2)[12] with drift Inf Inf 

ARIMA(2,1,1)(1,0,2)[12] with drift Inf Inf 

ARIMA(1,1,0)(1,0,2)[12] with drift Inf Inf 

ARIMA(1,1,2)(1,0,2)[12] with drift Inf Inf 

ARIMA(0,1,0)(1,0,2)[12] with drift 2498.705 2498.449 

ARIMA(2,1,2)(1,0,2)[12] with drift Inf Inf 

ARIMA(1,1,1)(1,0,2)[12] Inf Inf 

ARIMA(1,1,1)(2,0,2)[12] with drift Inf Inf 

As shown in Table 9, the best model under the stepwise-selection method among 

other models has been chosen as ARIMA(1,1,1)(1,0,2)[12] model with drift with the 

smallest AICc value 2405.964 and the smallest AIC value 2405.484. All other 
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models which have greater AIC values have been provided only for comparison 

purposes. After selecting the best model based on AIC and AICc, we need to estimate 

the significance of parameters: 

Table 10. Estimates of Parameters for ARIMA (1,1,1)(1,0,2)[12] Model with Drift 

 AR(1) MA(1) SAR(1) SMA(1) SMA(2) DRIFT 

Estimate 0.1750 -0.8857 0.8862 -0.7102 0.1813 -0.9323 

Standard Error 0.0763 0.0375 0.0537 0.0847 0.0746 1.3789 

Sigma^2 estimated: 1233  Log likelihood: -1194.59  AIC: 2405.48  AICc: 2405.96   BIC: 2429.88 

As clearly seen in Table 10, the coefficients of ARIMA (1,1,1)(1,0,2)[12] Model 

with Drift are significantly different from zero. 

Table 11.  BIC  Values  for  Suggested  ARIMA  Models  of  INF  Series by  Using Stepwise 

Selection 

    Suggested ARIMA models BIC 

ARIMA(2,1,2)(1,0,1)[12] with drift Inf 

ARIMA(0,1,0) with drift 2567.032 

ARIMA(1,1,0)(1,0,0)[12] with drift 2508.098 

ARIMA(0,1,1)(0,0,1)[12] with drift 2480.11 

ARIMA(0,1,0) 2561.554 

ARIMA(0,1,1)(1,0,1)[12] with drift Inf 

ARIMA(0,1,1) with drift 2505.423 

ARIMA(0,1,1)(0,0,2)[12] with drift 2466.905 

ARIMA(1,1,1)(0,0,2)[12] with drift 2460.993 

ARIMA(1,1,0)(0,0,2)[12] with drift 2522.935 

ARIMA(1,1,2)(0,0,2)[12] with drift 2465.473 

ARIMA(0,1,0)(0,0,2)[12] with drift 2545.954 

ARIMA(2,1,2)(0,0,2)[12] with drift 2472.072 

ARIMA(1,1,1)(0,0,2)[12] 2457.822 

ARIMA(1,1,1)(1,0,2)[12] Inf 

ARIMA(1,1,1)(0,0,1)[12] 2467.839 

ARIMA(0,1,1)(0,0,2)[12] 2462.758 

ARIMA(2,1,1)(0,0,2)[12] 2464.79 
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ARIMA(1,1,0)(0,0,2)[12] 2517.457 

ARIMA(1,1,2)(0,0,2)[12] 2462.153 

ARIMA(0,1,0)(0,0,2)[12] 2540.471 

ARIMA(2,1,2)(0,0,2)[12] 2469.057 

Table 11 presents BIC values for each suggested ARIMA model. If we take only 

BIC into account, the best model is seen to be ARIMA(1,1,1)(0,0,2)[12] model with 

a minimum value of 2457.822. The estimates of parameters of 

ARIMA(1,1,1)(0,0,2)[12] model are given in Table 12: 

Table 12. Estimates of Parameters for ARIMA (1,1,1)(0,0,2)[12] Model 

 AR(1) MA(1) SMA(1) SMA(2) 

Estimate 0.2412 -0.9183 0.2685 0.2295 

Standard Error 0.0701 0.0249 0.0690 0.0569 

Sigma^2: 1435  log-likelihood: -1219.39  AIC: 2448.78  AICc: 2449.03 BIC: 2466.2 

If ARIMA(1,1,1)(1,0,2)[12] model with drift chosen by AIC (or AICc) in Table 

9 and ARIMA(1,1,1)(0,0,2)[12] model chosen by BIC in Table 11 are compared, 

ARIMA(1,1,1)(1,0,2)[12] model with drift is chosen because of having smaller 

information criteria.  

For selecting the best-fitted model (to find out how well the model fits the data), 

we need to continue with the examination of residuals diagnostics (or diagnostic 

checking) in order to find out whether the residuals display a white noise process 

which is a vital assumption of a good ARIMA model (zero mean, constant variance, 

no serial correlation). In this stage, first we will have a look at Box-Ljung test results 

in order to make sure about residuals have no remaining autocorrelation. The null 

and alternative hypotheses are given respectively as follows: 

   The residuals are random (independently distributed) 

   The residuals are not random (not independently distributed, displaying 

serial correlation)   
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Table 13. Box-Ljung Test Results of ARIMA(1,1,1)(1,0,2)[12] Model with Drift at Seasonal 

Lags 

Seasonal Lags X-squared Statistics p-value 

12 10.6567 0.1543 

24 21.996 0.2845 

36 30.6726 0.4828 

48 39.8145 0.6102 

Table 13 presents the autocorrelation check results for the residuals of 

ARIMA(1,1,1)(1,0,2)[12] with drift model at seasonal lags and according to given 

results, we cannot reject the null hypothesis saying that residuals are independent 

and hence conclude about the absence of autocorrelation problem depending on the 

statistically insignificant chi-squared statistics (since p-values for Box-Ljung 

statistic are greater than 5% significance level for all seasonal lags 12,24,36,48). 

Therefore, this model can be said to fit the data well. This result is also verified by 

looking at the correlogram of residuals shown in Figure 6. All acf and pacf values in 

Figure 6 are within the significance limits and mean of the residuals seem to be 

randomly distributed around zero. Thus, the residuals appear to be white noise. 

Now let us check the normality of ARIMA(1,1,1)(1,0,2)[12] model with drift 

residuals. 

Table 14. Jarque - Bera Normality Test Results of ARIMA(1,1,1)(1,0,2)[12] Model  with 

Drift 

X-squared Statistic Asymptotic p-value 

3.2092 0.201 

Table 14 shows the Jarque-Bera test Results. As well known, the null hypothesis 

for the test is that residuals are normally distributed and the alternative hypothesis is 

that residuals are not normally distributed. Insignificant X-squared statistic with an 

asymptotic p-value of 0.201 that is greater than 5% significance level reveals that 

the null hypothesis cannot be rejected concluding that residuals are normally 

distributed. 
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Figure 6. ACF and  PACF  Plots  of  the  Residuals  of  ARIMA(1,1,1)(1,0,2)[12] Model with 

Drift 

Table 15. ARCH-LM Test Results of ARIMA(1,1,1)(1,0,2)[12] Model with Drift 

        Chi-squared           p-Value 

           14.7563            0.255 

After checking the normality assumption, now ARCH-LM (Autoregressive 

Conditional Heteroscedasticity-Lagrange Multiplier) test results are presented in 

Table 15 to find out if there is a heteroscedasticity problem. For this test, the null 

hypothesis says that there are no ARCH (Autoregressive Conditional 

Heteroscedasticity) effects (indicating to the constant variance). From ARCH-LM 

test results with the number of lags chosen as 12, it can be inferred that since p-value 

(0.255) exceeds 5% significance level, the null hypothesis of no ARCH effect 

(homoscedasticity) in the residuals of ARIMA(1,1,1)(1,0,2)[12] with drift model 

cannot be rejected and therefore concluding that the residuals of 

ARIMA(1,1,1)(1,0,2)[12] with drift model are homoscedastic (that is, the residuals 

have constant variance). Briefly, it can be said that all assumptions regarding 

diagnostic checking (no serial correlation, normality of residuals, constant variance) 

hold for this model. 
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Table 16. Forecast  Accuracy Measures for ARIMA (1,1,1)(1,0,2)[12]  Model  with  Drift 

ME RMSE MAE MPE MAPE MASE 

-0.3333779 34.08106 25.34299 -49.62708 70.50063 0.73495 

Note.      ME: Mean Error; RMSE: Root Mean Squared Error; MAE: Mean Absolute Error; 

MPE: Mean Percentage Error; MAPE: Mean Absolute Percentage Error; MASE: Mean 

Absolute Scaled Error (For more information about the accuracy measures, see Ord & Fildes, 

2013, chap. 2). 

In Table 16, various forecast accuracy measures for ARIMA(1,1,1)(1,0,2)[12] 

with drift model that is chosen under the stepwise-selection method have been 

presented. Afterwards, these results will be compared to the model that will be 

chosen under the non-stepwise selection method.   

Subsequent to applying (faster) stepwise-selection method which provides a 

short-cut for selecting the best-fitted model, now let us try the same thing under the 

(slower) non-stepwise selection method which searches for all possible models. In 

this case, the best choice under the nonstepwise-selection method has been 

determined to be ARIMA(1,1,1)(2,0,0)[12] with drift model for inflation series. The 

estimates of parameters of this new model are given in Table 17: 

Table 17. Estimates of Parameters for ARIMA (1,1,1)(2,0,0)[12] Model with Drift 

 AR(1) MA(1) SAR(1) SAR(2) DRIFT 

Estimate 0.2202 -0.9273 0.2961 0.3136 -0.4393 

Standard 

Error 

0.0752 0.0336 0.0610 0.0633 0.5195 

Sigma^2: 1270  log-likelihood: -1200.75  AIC: 2413.51  AICc: 2413.87  BIC: 2434.42 

As it is apparent in Table 17, the coefficients of ARIMA (1,1,1)(2,0,0)[12] 

Model with Drift are seen to be significant. 
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Figure 7.  ACF and PACF  Plots  of  the  Residuals  of  ARIMA (1,1,1)(2,0,0)[12] Model  

with Drift 

When looked at Figure 7, mean of the residuals of ARIMA(1,1,1)(2,0,0)[12] 

model with drift is seen to be distributed around zero. However, acf and pacf values 

are within the significance limits only up to 12 and 24 seasonal lags. Even though 

the absence of autocorrelation at seasonal lag 12 is sufficient to make a positive 

inference about no serially correlated residuals (since we are dealing with monthly 

inflation rates in which the length of seasonal period is 12), a spike is realized at 36th 

lag and therefore not all acf values are seen to take place within the significance 

limits because of this 36th lag. If ARIMA(1,1,1)(2,0,0)[12] model with drift is 

compared to ARIMA (1,1,1)(1,0,2)[12] model with drift that does not enable such a 

spike at 36th lag apart from other seasonal lags as observed in Figure 6, the latter 

(with stepwise-selection method) can be said to be a stronger model than the former 

(with non-stepwise selection method). Let us verify this with an examination on Box-

Ljung test statistics at seasonal lags: 
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Table 18. Box-Ljung Test Results of ARIMA(1,1,1)(2,0,0)[12] Model with Drift at Seasonal 

Lags Based on the Non-stepwise Selection 

Seasonal Lags X-squared Statistics p-value 

12 12.6478 0.1246 

24 25.7961 0.1727 

36 46.7037 0.04507 

48 58.2202 0.07392 

Table 18 presents the autocorrelation check results for the residuals of 

ARIMA(1,1,1)(2,0,0)[12] with drift model at seasonal lags based on the non-

stepwise selection. According to both the plot of ACF in Figure 7 and Table 18 

results, no serial correlation has been detected except 36th lag with a probability 

value (p-value) of 0.04507 which is smaller than 5% significance level. Therefore p-

values for Box-Ljung statistics at seasonal lags 12, 24, 48 are greater than 5% 

significance level indicating to the non-rejection of the null hypothesis of 

independently distributed residuals at these seasonal lags. Only 36th lag creates 

serially correlated residuals depending on the rejection of the null. Now let us check 

the normality of ARIMA(1,1,1)(2,0,0)[12] model with drift residuals: 

Table 19. Jarque - Bera Normality Test Results of ARIMA(1,1,1)(2,0,0)[12] Model  with 

Drift 

X-squared Statistic Asymptotic p-value 

1.0074 0.6043 

According to the Jarque-Bera test results given in Table 19, we fail to reject the 

null hypothesis saying that the residuals are normally distributed with an 

insignificant X-squared statistic having an asymptotic p-value of 0.6043 that is 

greater than 5% significance level.  

Table 20. ARCH-LM Test Results of ARIMA(1,1,1)(2,0,0)[12] Model with Drift 

        Chi-squared           p-Value 

           15.6521            0.2077 

From the ARCH-LM test results, it can be inferred that the null hypothesis of no 

ARCH effect in the residuals of ARIMA(1,1,1)(2,0,0)[12] model with drift cannot 

be rejected and hence the residuals of this model are said to be homoscedastic. 
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Briefly, all assumptions regarding normality of residuals, and constant variance hold 

for this model except autocorrelation check for 36th lag. Residuals of 

ARIMA(1,1,1)(2,0,0)[12] model with drift are independently distributed up to 

seasonal lags 12 and 24, however not independently distributed for seasonal lag 36. 

 

Figure 8. Plot of  ARIMA (1,1,1)(2,0,0)[12] with Drift Residuals against Time 

Table 21. Forecast  Accuracy  Measures  for ARIMA (1,1,1)(2,0,0)[12] Model with Drift 

ME RMSE MAE MPE MAPE MASE 

-0.3060675 35.49517 27.12352 -60.00625 80.78677 0.7865855 

Note. (For more information about the accuracy measures, see Ord & Fildes, 2013, chap. 2.) 

In Table 21, forecast accuracy measures for ARIMA(1,1,1)(2,0,0)[12] with drift 

model that is based on the non-stepwise selection method have been presented. 

4. CONCLUSION 

Now that we have identified two models based on both stepwise and non-stepwise 

selection, we can provide a summary of final results: In this application, 

ARIMA(1,1,1)(1,0,2)[12] with drift model chosen by using (faster) stepwise 

selection method and ARIMA(1,1,1)(2,0,0)[12] with drift model chosen by using 

(slower) non-stepwise selection which seeks for all possible models have been 

compared. Although we expect the latter model with non-stepwise selection to be 

better (since, stepwise selection offers short-cuts in selecting the best model), the 

results have shown that the former model with stepwise-selection is better as the 

best-fitted SARIMA model. A summary of the comparison of both models is given 

in Table 22: 
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Table 22.   Comparison  of  ARIMA  (1,1,1)  (1,0,2) [12]  with  Drift  and  ARIMA (1,1,1) 

(2,0,0) [12]  with  Drift  Models 

 

Model 

Accuracy 

Measures 

Significancy 

of 

Coefficients 

AICc Normality 
ARCH- 

LM 

ACF of Residuals 

(Autocorrelation 

check for residuals) 

 M
o
d
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 1
 

RMSE: 

34.08106 

MAE: 

25.34299 

MAPE: 

70.50063 

MASE: 

0.73495 

All seasonal 

and non-

seasonal AR 

and MA 

coefficients 

are 

significant. 

2405.96 ok ok 

There is no spike (no 

autocorrelation at all 

seasonal lags 

12,24,36,48.) 

 M
o
d

el
  

  

 2
 

RMSE: 

35.49517 

MAE: 

27.12352 

MAPE: 

80.78677 

MASE: 

0.7865855 

All seasonal 

and non-

seasonal AR 

and MA 

coefficients 

are 

significant. 

2413.87 ok ok 

There is a spike at 

36th lag 

(autocorrelation 

problem exists at 36th 

lag). 

Note. Model 1 represents ARIMA(1,1,1)(1,0,2)[12] with Drift. Model 2 represents 

ARIMA(1,1,1)(2,0,0)[12] with Drift. 

 
As seen in Table 22, forecast accuracy measures of model 1 are smaller than the 

ones of model 2. In the light of given information, it is possible to say that model 1 

satisfies all necessary assumptions (no serial correlation, constant variance and 

normality) and is better in all respects than model 2 with the smallest AICc, 

significant parameters, no spike at ACF etc. Therefore having satisfied all model 

assumptions, model 1 can be regarded as the best-fitted model for forecasting 

monthly inflation rates in Turkish economy. 

For ARIMA(1,1,1)(1,0,2)[12] with drift (stepwise) model, apart from all required 

checks, we need to check also the causality, stationarity and invertibility condition. 

For  ARIMA(1,1,1)(1,0,2)[12] with drift (stepwise) model to be causal, stationary 
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and invertible, all roots of the characteristic polynomial of AR, MA, SAR and SMA 

operators should be greater than 1 in absolute value. 

A causal invertible model should have all the roots outside the unit circle. Equiv-

alently, the inverse roots should lie inside the unit circle (Hyndman, 2014). Here, all 

inverse roots lie inside the unit circle as shown in the figures given as follows 

(Hyndman, 2015: 53): our ARIMA(1,1,1)(1,0,2)[12] with drift (stepwise) model can 

be said to satisfy causality, stationarity and invertibility conditions.  

Figure 9. Plots of  Inverse AR and MA Roots 

 

REFERENCES 

ABRAHAM, B., BOX, G. E. P. (1978), “Deterministic and Forecast-Adaptive 

Time-Dependent Models”, Applied Statistics, 27(2), 120-130. 

 

AIDOO, E. (2010), Modelling and forecasting inflation rates in Ghana: An 

application of SARIMA models. Master’s Thesis, Högskolan Dalarna School of 

Technology & Business Studies, Sweden. 

 

AKUFFO, B., AMPAW, E. M. (2013), “An Autoregressive Integrated Moving 

Average (ARIMA) Model for Ghana’s Inflation (1985-2011)”, Mathematical 

Theory and Modelling, 3(3), 10-26. 

 

Inverse AR roots

Real

Im
ag

in
ar

y

-1 0 1

-i
0

i

Inverse MA roots

Real

Im
a

g
in

a
ry

-1 0 1

-i
0

i



 

 

 

 

 

 

   

Dokuz Eylül Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi  
                                    Cilt:32, Sayı:2, Yıl:2017, ss. 143-182 

179 

 

BEAULIEU, J. J., MIRON, J. A. (1992), Seasonal Unit Roots in Aggregate U.S. 

Data (NBER Technical Paper No. 126). Cambridge: National Bureau of Economic 

Research. 

BEAULIEU, J. J., MIRON, J. A. (1993), “Seasonal Unit Roots in Aggregate U.S. 

Data”, Journal of Econometrics, 55(1-2), 305-328. 

 

BOX, G. E. P., JENKINS, G. M. (1970), Time Series Analysis: Forecasting and 

Control, Holden-Day, San Francisco. 

 

BOX, G. E. P., JENKINS, G. M. (1976), Time Series Analysis: Forecasting and 

Control (2nd ed.), Holden-Day, San Francisco. 

 

BROCKWELL, P. J., DAVIS, R. A. (2002), Introduction to Time Series and 

Forecasting (2nd ed.), Springer-Verlag, New York.   

 

BROCKWELL, P. J., DAVIS, R. A. (2006), Time Series: Theory and Methods 

(2nd ed.), Springer, New York.   

 

CANOVA, F., HANSEN, B. E. (1995), “Are Seasonal Patterns Constant Over 

Time? A Test for Seasonal Stability”, Journal of Business and Economic Statistics, 

13(3), 237-252. 

 

CHANG, Y. W., LIAO, M. Y. (2010), “A Seasonal ARIMA Model of Tourism 

Forecasting: The Case of Taiwan”, Asia Pacific Journal of Tourism Research, 15(2), 

215-221. 

 

CHATFIELD, C. (1996), The Analysis of Time Series: An Introduction (5th ed.), 

Chapman & Hall/CRC, London, UK. 

 

CHEN, R., SCHULZ, R., STEPHAN, S. (2003), “Multiplicative SARIMA 

Models”, Computer-Aided Introduction to Econometrics, (Ed. J.R. Poo), Berlin: 

Springer-Verlag, 225-254. 

COSAR, E. E. (2006), “Seasonal Behaviour of the Consumer Price Index of 

Turkey”, Applied Economics Letters, 13(7), 449-455. 

 



 

 

 

 

M.ÖZMEN – S. ŞANLI 

180 

 

DIAZ-EMPARANZA, I., LOPEZ-de-LACALLE, J. (2006), “Testing for Unit 

Roots in Seasonal Time Series with R: The Uroot Package”, 

http://www.jalobe.com:8080/doc/uroot.pdf, (10.05.2015).  

DICKEY, D., HASZA, D., FULLER, W. (1984), “Testing for Unit Roots in 

Seasonal Time Series”, Journal of the American Statistical Association, 79(386), 

355-367. 

 

FRANSES, P. H. (1991), Model Selection and Seasonality in Time Series. 

Doctoral dissertation, Erasmus University Rotterdam, Netherlands. Retrieved from                                                                                                                                                                                                                             

http://hdl.handle.net/1765/2047.   

 

FRANSES, P. H. (1998), “Modeling Seasonality in Economic Time Series”, 

Handbook of Applied Economic Statistics, (Eds. A. Ullah and D.E.A. Giles), New 

York: Marcel Dekker, 553-577.  

 

FRANSES, P. H., HOBIJN, B. (1997), “Critical Values for Unit Root Tests in 

Seasonal Time Series”, Journal of Applied Statistics, 24(1), 25-48. 

 

FRANSES, P. H., KOEHLER, A. B. (1998), “A Model Selection Strategy for 

Time Series with Increasing Seasonal Variation”, International Journal of 

Forecasting, 14(3), 405-414. 

 

HAMAKER, E. L., DOLAN, C. V. (2009), “Idiographic Data Analysis: 

Quantitative Methods - from Simple to Advanced”, Dynamic Process Methodology 

in the Social and Developmental Sciences, (Eds. J. Valsiner, P. C. M. Molenaar, M. 

C. D. P. Lyra and N. Chaudhary), New York: Springer-Verlag, 191-216.  

 

HASZA, D. P., FULLER, W. A. (1982), “Testing for Nonstationary Parameter 

Specifications in Seasonal Time Series Models”, The Annals of Statistics, 10(4), 

1209-1216. 

 

HILLMER, S. C., BELL, W. R.,  TIAO, G. C. (1983), “Modeling Considerations 

in the Seasonal Adjustment of Economic Time Series”, Applied Time Series Analysis 

of Economic Data, (Ed. A. Zellner), Washington, DC: U.S. Bureau of the Census, 

74-100. 

 

HYLLEBERG, S., ENGLE, R., GRANGER, C., YOO, S. (1990), “Seasonal 

Integration and Cointegration”, Journal of Econometrics, 44(1), 215-238. 



 

 

 

 

 

 

   

Dokuz Eylül Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi  
                                    Cilt:32, Sayı:2, Yıl:2017, ss. 143-182 

181 

 

 

HYNDMAN, R., J. (2014), “Plotting the Characteristic Roots for ARIMA 

Models”, http://robjhyndman.com/hyndsight/arma-roots/, (01.08.2015). 

 

HYNDMAN, R., J. (2015, May), “Package ‘Forecast’”, http://cran.r-

project.org/web/packages/forecast/forecast.pdf, (02.06.2015). 

 

KWIATKOWSKI, D., PHILLIPS, P. C. B., SCHMIDT, P., SHIN, Y. (1992), 

“Testing the Null Hypothesis of Stationarity Against the Alternative of a Unit Root: 

How Sure Are We That Economic Time Series Have a Unit Root?”,  Journal of 

Econometrics, 54(1-3), 159-178. 

 

LIM, C., MCALEER, M. (2000), “A Seasonal Analysis of Asian Tourist Arrivals 

to Australia”, Applied Economics, 32(4), 499-509. 

 

MADDALA, G. S., KIM, I. M. (1998), Unit Roots, Cointegration and Structural 

Change, Cambridge University Press, Cambridge. 

 

ORD, K., FILDES, R. (2013), Principles of Business Forecasting, South-

Western, Cengage Learning. 

 

OSBORN, D.R., CHUI, A. P. L., SMITH, J. P., BIRCHENHALL, C. R. (1988), 

“Seasonality and the Order of Integration for Consumption”, Oxford Bulletin of 

Economics and Statistics, 50(4), 361-377. 

 

PANKRATZ, A. (1983), Forecasting with Univariate Box-Jenkins Model: 

Concepts and Cases, John Wiley & Sons, New York. 

 

PLATON, V. (2010), “Application of Seasonal Unit Roots Tests and Regime 

Switching Models to the Prices of Agricultural Products in Moscow 1884-1913”, 

http://www.hse.ru/data/2010/10/22/1222675037/Seasonal%20unit%20roots%20an

d%20regime%20switch.pdf, (04.01.2015). 

 

SANLI, S. (2015), The Econometric Analysis of Seasonal Time Series: 

Applications on Some Macroeconomic Variables, Master’s Thesis, Cukurova 

University, Adana. 



 

 

 

 

M.ÖZMEN – S. ŞANLI 

182 

 

 

SAZ, G. (2011), “The Efficacy of SARIMA Models for Forecasting Inflation 

Rates in Developing Countries: The Case for Turkey”, International Research 

Journal of Finance and Economics, 62, 111-142. 

 

SHUMWAY, R. H., STOFFER, D. S. (2011), Time Series Analysis and Its 

Applications - with R Examples (3rd ed.), Springer, New York.  

 

SØRENSEN, N. K. (2001), “Modelling the Seasonality of Hotel Nights in 

Denmark by County and Nationality”, Seasonality in Tourism, (Eds. T. Baum and S. 

Lundtrop), Oxford: Elsevier, 75-88.  

 

TAM, W. K.,  REINSEL, G. C. (1997), “Tests for Seasonal Moving Average Unit 

Root in ARIMA Models”, Journal of the American Statistical Association, 92(438), 

725-738. 

 

ZHANG, Q. (2008), Seasonal Unit Root Tests: A Comparison. Doctoral 

Dissertation. North Carolina State University, Raleigh. 

 


