BibTex RIS Cite

Investigating Prospective Teachers’ Ability to Write Context-Based Problems / Öğretmen Adaylarının Bağlam Temelli Problem Yazabilme Becerilerinin Belirlenmesi

Year 2016, Volume: 12 Issue: 2, 447 - 463, 24.03.2016

Abstract

Bu çalışmanın amacı fen bilimleri öğretmen adaylarının radyoaktivite konusundaki kavramlar ile ilgili bağlam temelli soru yazabilme becerilerinin belirlenmesidir. Çalışma Türkiye’de bulunan bir üniversitede 2014-2015 güz döneminde 21 öğretmen adayıyla (fizik, kimya ve biyoloji) yürütülmüştür. Çalışmada veriler öğretmen adaylarının radyoaktivite konusundaki kavramlar hakkında yazmış oldukları bağlam temelli sorular aracılığıyla toplanmıştır. Elde edilen veriler, araştırmacılar tarafından geliştirilen bir rubric yardımıyla değerlendirilmiştir. Elde edilen bulgulara göre, öğretmen adayları günlük hayattan bağlam seçmede ‘yetersiz’ bulunmuşlardır. Çalışmanın sonucunda, öğretmen adaylarının ‘bağlam temelli’ kavaramından anladıklarının yalnızca ‘günlük yaşamla ilişkili olan herhangi bir şey’ olduğu sonucuna ulaşılmıştır. Bu durumun giderilebilmesi için hizmetiçi kurslar önerilerek çalışma sonlandırılmıştır.

References

  • Akpınar, M. (2012). The effect of the conceptual change texts on student achievement gain at physics education carried out with context based approach. Unpublished PhD Thesis, Gazi University, Ankara, Turkey.
  • Alsop, S. (2001). Living with and learning about radioactivity: a comparative conceptual study. International Journal of Science Education, 23(3), 263-281.
  • Andersson, B. (1986). Pupils’ explanations of some aspects of chemical reactions. Science Education, 70(5), 549-563.
  • Barker, V. & Millar, R. (1999). Students’ reasoning about chemical reactions: What changes occur during a context-based post-16 chemistry course? International Journal of Science Education, 21, 645-665.
  • Barker ,V. & Millar, R. (2000). Students’ reasoning about basic chemical thermodynamics and chemical bonding: What changes occur during a context-based post-16 chemistry course? International Journal of Science Education, 22, 1171- 1200.
  • Bennett, J., Holman, J., Lubben, F., Nicolson, P. & Otter, C. (2005). Science in context: The Salters approach in P Nentwig & D Waddington (eds), Making it relevant: Context based learning of science. Waxmann, Munster, Germany, 121-153.
  • Bennett, J. & Lubben, F. (2006). Context-based chemistry: The salters approach. International Journal of Science Education, 28(9), 999-1015.
  • Brown, D. D. E. & Clement, J. (1987). Nuclear dangers. A resource guide for secondary school teachers, update. Nuclear Information and Research Service. 1424 16th street. NW suite 601. Washington, DC. 20036.
  • Campbell, B., Lubben, F. & Dlamini, Z. (2000). Learning science through contexts: Helping pupils make sense of everyday situations. International Journal of Science Education, 22, 239-252.
  • Ceng, Z., Dönmez, N., Karslı, F. & Ayas, A. (2007). Öğretmen adaylarının radyasyon hakkındaki anlama seviyelerinin belirlenmesi. Ulusal Kimya Eğitimi Kongresi Kimya Eğitiminde Yeni Ufuklar, İstanbul.
  • Choi, H. J. & Johnson, S. D. (2005). “The effect of context-based video instruction on learning and motivation in on-line courses”. The American Journal of Distance Education, 19(4), 215–227.
  • Cohen, L. B. (1998). Çok geç olmadan- Before it’s too late. TÜBİTAK Popüler Bilim Kitapları, Nural Matbaacılık, Ankara.
  • Creswell, J. W. (2003). Research design: Qualitative, quantitative and mixed methods, approaches (2nd Ed.). Sage Publications, United States of America.
  • Demircioğlu, H., Demircioğlu, G. & Çalık, M. (2009). Investigating effectiveness of storylines embedded within context based approach: A case for the periodic table. Chemistry Education Research and Practice, 10, 241-249.
  • Dönmez Usta, N. (2011). Developing, implementing and evaluating CAI materials related to “radioactivity” topic based on constructivist learning theory. Unpublished PhD Thesis, Karadeniz Technical University, Trabzon, Turkey.
  • Dönmez Usta, N. & Ayas, A. (2010a). Common misconceptions in nuclear chemistry unit. Procedia-Social and Behavioral Sciences, 2(2), 1432-1436.
  • Dönmez Usta, N. & Ayas, A. (2010b). Ortaöğretim öğrencilerinin çekirdek kimyasi ünitesi’ne yönelik tutumlarinin belirlenmesi. IX. Ulusal Fen Bilimleri ve Matematik Eğitimi Kongresine sunulmuş bildiri, 23-25 Eylül, İzmir.
  • Dönmez Usta, N. & Ayas, A. (2013). Radyoaktif bozunma kavramına yönelik bilgisayar destekli öğretim materyalinin geliştirilmesi ve uygulanabilirliğinin incelenmesi. III. Ulusal Kimya Eğitimi Kongresi Bildiri Özetleri, 5-7 Eylül 2013, Trabzon, p.54.
  • Dönmez Usta, N., Karslı, F. & Ayas, A. (2014). The development of computer assisted instructional material about types of radioactivity degradation in nuclear chemistry. International Journal of New Trends in Arts, Sports & Science Education, 3(1), 51-58.
  • Dönmez Usta N., Karslı, F., Ceng, Z. & Ayas, A. (2009). Çekirdek kimyası (radyoaktivite) ünitesindeki bazı kavramlara yönelik fen bilgisi öğretmen adaylarının anlama düzeylerinin belirlenmesi. Fen, Sosyal ve Çevre Eğitiminde Son Gelişmeler Kongresi, 18-20 Kasım, Giresun.
  • Eppink, J. A. (2002). Student-created Rubrics: An Idea That Works. Teaching Music. 9(4).
  • Gallo, A. M. (2004) 5 simple steps to designing a rubric. Strategies, 17(5), 21-24.
  • Georghiades, P. (2006). The role of metacognitive activities in the contextual use of primary pupils’ conceptions of science. Research in Science Education, 36, 29-49.
  • Gilbert, J. K. (2006). On the nature of “context” in chemical education. International Journal of Science Education, 28(9), 957-976.
  • Graber, W., Erdmann, T. & Schlieker, V. (2002). ParCIS: Partnership between chemical industry and schools. Paper presented at the 2nd International IPN – YSEG Symposium, Kiel, Germany.
  • Heller, P. & Hollabaugh, M. (1992). Teaching problem solving through cooperative grouping. Part 2: Designing problems and structuring groups. American Journal of Physics, 60, 637–644.
  • Hofstein, A. & Kesner, M. (2006). Industrial chemistry and school chemistry: Making chemistry studies more relevant. International Journal of Science Education, 28(9), 1017-1039.
  • Holman, J. & Pilling, G. (2004). Thermodynamics in context: a case study of contextualized teaching for undergraduates. Journal of Chemical Education, 81(3), 373-375.
  • Ingram, S. J. (2003). The effects of contextual learning ınstruction on science achievement of male and female tenth grade students. Unpublished PhD Thesis, University of South Alabama, The Graduate Faculty, South Alabama.
  • Janiuk , R. M. (1993). The process of learning chemistry: A review of the studies. Journal of Chemical Education, 70(10), 828-829.
  • King, D. & Ritchie, S. M. (2007). Implementing a context-based approach in a chemistry class: successes and dilemmas, Paper presented at the annual meeting of the National Association for Research in Science Teaching, New Orleans, LA: April.
  • Knecht, K. (1971). Fizik ve matematik öğretiminin koordinasyonu hakkında, bugünkü fizik öğretimi, Çeviren B. Örnekol, Milli Eğitim Basım Evi, İstanbul.
  • Kurnaz, M. A. (2013). An investigation of physics teachers’ perceptions of context based physics problems. Kastamonu Education Journal, 21(1), 375-390.
  • Linn, R. L. & Gronlund, N. E. (1995). Measurement and assessment in teaching. Prentice Hall. USA.
  • Matsuuar, T. & Iiri, Y. (2002). The ımportance of making right knowledge aboutradiation popular-activity of “radiation education forum”. http://www.irpa.net/irpa10/cdrom/01306.pdf son erişim: 20 Nisan 2015.
  • Max, G. (1993). Everyday risk. Physics Education, 28, 22-25.
  • Mertler, C. A. (2001). Designing scoring rubrics for your classroom.practical assessment. Research & Evaluation, 7(25).
  • Morgil, İ., Yılmaz, A. & Uludağ, N. (2004). Lise 2 kimya ders kitabında yer alan radyoaktivite konusunun incelenmesi, öğrencilerin bu konudaki bilgilerinin araştırılması ve öneriler. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 27, 206-215.
  • Moskal, B. M. (2000). Scoring rubrics: What, when and how?. Practical assessment. Research & Evaluation. 7(3).
  • National ministry Education. (2012). Ortaöğretim fizik ders kitabi. Beşinci Baskı. Ankara: Milli Eğitim Bakanlığı.
  • Park, J. & Lee, L. (2004). Analyzing cognitive and non-cognitive factors involved in the pro-cess of physics problem-solving in an everyday context. International Journal of Science Education, 29, 1577–1595.
  • Pilot, A. & Bulte, A. (2006). Why do you “need-to-know”: Context-Based Education. International Journal of Science Education, 28(9), 953-956.
  • Potter, N. M. & Overton, T. L. (2006). Chemistry in sport: Context-based e-learning in chemistry. Chemistry Education Research and Practice, 7, 195-202.
  • Prather, E. E. & Harrington R. R. (2001). Students understanding of ionising radiation and radioactivity. Journal of College Science Teaching, 31(2), 89-93.
  • Ramsden, J. (1997). How does a context-based approach infuence understanding of key chemical ideas at 16+?. Internotional Journal of Science Education, 19, 657-710.
  • Rayner, A. (2005). Reflections on context-based science teaching: A case study of physics for students of physiotherapy. Poster Presentation. UniServe Science Blended Learning Symposium Proceedings. 169-172. http://science.uniserve.edu.au/pubs/procs/wshop10/2005Rayner.pdf son erişim: 20.04.2015
  • Rennie, L. J. & Parker, L. H. (1996). Placing physics problems in real-life context: students' reactions and performance. Australian Science Teachers Journal, 42(1), 55-59.
  • Review. (2003). A systematic review of the effects of context-based and Science- Technology-Society (STS) approaches in the teaching of secondary science.TTA- supported Science Review Group. The EPPI-Centre is part of the Social Science Research Unit, Institute of Education, University of London.
  • Ronneau, C. (1990). Radioactivitiy: A natural phenomenon. Journal of Chemical Education, 67(9), 736-737.
  • Sözbilir, M., Sadi, S., Kutu, H. & Yıldırım, A. (2007). Kimya eğitiminde içeriğe/bağlama dayalı (context-based) öğretim yaklaşımı ve dünyadaki uygulamaları, I. Ulusal Kimya Eğitimi Kongresi (s. 108). İstanbul: Türkiye.
  • Stolk, M. J., Bulte, A. M. W., de Jong, O. & Pilot, A. (2009). Towards a framework for a professional development programme: Empowering teachers for context-based chemistry education. Chemistry Education: Research and Practice, 10, 164–175.
  • Taasoobshirazi, G. & Carr, M. (2008). A review and critique of context-based physics instruction and assessment. Educational Research Review, 3, 155-167.
  • TLA, (2015). http://www.tdk.gov.tr/index.php?option=com_gts&arama=gts&guid=TDK.GTS.553f85f684f180.17727322 Access date 28.04.2015.
  • Tekbıyık, A. & Akdeniz, A. R. (2010). An investigation on the comparison of context based and traditional physics problems. Necatibey Faculty of Education Electronic Journal of Science and Mathematics Education, 4(1), 123-140.
  • Truemper, C. M. (2004). Using scoring rubrics to facilitate assessment and evaluation of graduate-level nursing students. Journal of Nursing Education, 43(12).
  • Tuncel, G. (2011). Sosyal bilgiler dersinde rubriklerin etkili kullanımı. Marmara Coğrafya Dergisi, 23, 213-233.
  • Ültay, E. (2012). Implementing REACT strategy in a context-based physics class: Impulse and momentum example. Energy Education Science and Technology Part B: Social and Educational Studies, 4(1), 233-240.
  • Ültay, E. (2014). Investigating the effect of the activities based on explanation assisted REACT strategy in context-based learning approach on impulse, momentum and collisions. Unpublished PhD Thesis, Karadeniz Technical University, Trabzon, TURKEY.
  • Ültay, E. & Ültay, N. (2014). Context-based physics studies: A thematic review of the literature. H. U. Journal of Education, 29(3), 197-219.
  • Ültay, N. (2012). Designing, Implementing and comparing “acids and bases” instructional tasks based on REACT strategy and 5E model. Unpublished PhD Thesis, Karadeniz Technical University, Trabzon, TURKEY.
  • Ültay, N. & Çalık, M. (2012). A thematic review of studies into the effectiveness of context-based chemistry curricula. Journal of Science Education and Technology, 21(6), 686-701.
  • Ültay, N. (2015). The effect of concept cartoons embedded within context-based chemistry: Chemical bonding. Journal of Baltic Science Education, 14(1), 96-108.
  • Ültay, N. & Çalık, M. (2011). Distinguishing 5E model from REACT strategy: An example of ‘acids and bases’ topic. Necatibey Faculty of Education Electronic Journal of Science and Mathematics Education, 5(2), 199-220.
  • Ültay, N., Durukan, Ü. G. & Ültay, E. (2015). Evaluation of the effectiveness of conceptual change texts in the REACT strategy. Chemistry Education Research and Practice, 16(1), 22-38.
  • Wilkinson, J. W. (1999). The contextual approach to teaching physics. Australian Science Teachers Journal, 45(4), 43.
  • Williams, D. H. (1995). Successes and techniques associated with teaching the chemistry of radioactive wastes. Journal of Chemical Education, 72(11), 971-973.
  • Yavuz, I. & Kepçeoğlu, I. (2011). Bağıntı konusunda bağlam temelli ile geleneksel öğretimin öğrencilerin başarıları üzerinde etkilerinin incelenmesi. İstanbul Aydın Üniversitesi Fen Bilimleri Dergisi, 8(3), 143-166.
Year 2016, Volume: 12 Issue: 2, 447 - 463, 24.03.2016

Abstract

References

  • Akpınar, M. (2012). The effect of the conceptual change texts on student achievement gain at physics education carried out with context based approach. Unpublished PhD Thesis, Gazi University, Ankara, Turkey.
  • Alsop, S. (2001). Living with and learning about radioactivity: a comparative conceptual study. International Journal of Science Education, 23(3), 263-281.
  • Andersson, B. (1986). Pupils’ explanations of some aspects of chemical reactions. Science Education, 70(5), 549-563.
  • Barker, V. & Millar, R. (1999). Students’ reasoning about chemical reactions: What changes occur during a context-based post-16 chemistry course? International Journal of Science Education, 21, 645-665.
  • Barker ,V. & Millar, R. (2000). Students’ reasoning about basic chemical thermodynamics and chemical bonding: What changes occur during a context-based post-16 chemistry course? International Journal of Science Education, 22, 1171- 1200.
  • Bennett, J., Holman, J., Lubben, F., Nicolson, P. & Otter, C. (2005). Science in context: The Salters approach in P Nentwig & D Waddington (eds), Making it relevant: Context based learning of science. Waxmann, Munster, Germany, 121-153.
  • Bennett, J. & Lubben, F. (2006). Context-based chemistry: The salters approach. International Journal of Science Education, 28(9), 999-1015.
  • Brown, D. D. E. & Clement, J. (1987). Nuclear dangers. A resource guide for secondary school teachers, update. Nuclear Information and Research Service. 1424 16th street. NW suite 601. Washington, DC. 20036.
  • Campbell, B., Lubben, F. & Dlamini, Z. (2000). Learning science through contexts: Helping pupils make sense of everyday situations. International Journal of Science Education, 22, 239-252.
  • Ceng, Z., Dönmez, N., Karslı, F. & Ayas, A. (2007). Öğretmen adaylarının radyasyon hakkındaki anlama seviyelerinin belirlenmesi. Ulusal Kimya Eğitimi Kongresi Kimya Eğitiminde Yeni Ufuklar, İstanbul.
  • Choi, H. J. & Johnson, S. D. (2005). “The effect of context-based video instruction on learning and motivation in on-line courses”. The American Journal of Distance Education, 19(4), 215–227.
  • Cohen, L. B. (1998). Çok geç olmadan- Before it’s too late. TÜBİTAK Popüler Bilim Kitapları, Nural Matbaacılık, Ankara.
  • Creswell, J. W. (2003). Research design: Qualitative, quantitative and mixed methods, approaches (2nd Ed.). Sage Publications, United States of America.
  • Demircioğlu, H., Demircioğlu, G. & Çalık, M. (2009). Investigating effectiveness of storylines embedded within context based approach: A case for the periodic table. Chemistry Education Research and Practice, 10, 241-249.
  • Dönmez Usta, N. (2011). Developing, implementing and evaluating CAI materials related to “radioactivity” topic based on constructivist learning theory. Unpublished PhD Thesis, Karadeniz Technical University, Trabzon, Turkey.
  • Dönmez Usta, N. & Ayas, A. (2010a). Common misconceptions in nuclear chemistry unit. Procedia-Social and Behavioral Sciences, 2(2), 1432-1436.
  • Dönmez Usta, N. & Ayas, A. (2010b). Ortaöğretim öğrencilerinin çekirdek kimyasi ünitesi’ne yönelik tutumlarinin belirlenmesi. IX. Ulusal Fen Bilimleri ve Matematik Eğitimi Kongresine sunulmuş bildiri, 23-25 Eylül, İzmir.
  • Dönmez Usta, N. & Ayas, A. (2013). Radyoaktif bozunma kavramına yönelik bilgisayar destekli öğretim materyalinin geliştirilmesi ve uygulanabilirliğinin incelenmesi. III. Ulusal Kimya Eğitimi Kongresi Bildiri Özetleri, 5-7 Eylül 2013, Trabzon, p.54.
  • Dönmez Usta, N., Karslı, F. & Ayas, A. (2014). The development of computer assisted instructional material about types of radioactivity degradation in nuclear chemistry. International Journal of New Trends in Arts, Sports & Science Education, 3(1), 51-58.
  • Dönmez Usta N., Karslı, F., Ceng, Z. & Ayas, A. (2009). Çekirdek kimyası (radyoaktivite) ünitesindeki bazı kavramlara yönelik fen bilgisi öğretmen adaylarının anlama düzeylerinin belirlenmesi. Fen, Sosyal ve Çevre Eğitiminde Son Gelişmeler Kongresi, 18-20 Kasım, Giresun.
  • Eppink, J. A. (2002). Student-created Rubrics: An Idea That Works. Teaching Music. 9(4).
  • Gallo, A. M. (2004) 5 simple steps to designing a rubric. Strategies, 17(5), 21-24.
  • Georghiades, P. (2006). The role of metacognitive activities in the contextual use of primary pupils’ conceptions of science. Research in Science Education, 36, 29-49.
  • Gilbert, J. K. (2006). On the nature of “context” in chemical education. International Journal of Science Education, 28(9), 957-976.
  • Graber, W., Erdmann, T. & Schlieker, V. (2002). ParCIS: Partnership between chemical industry and schools. Paper presented at the 2nd International IPN – YSEG Symposium, Kiel, Germany.
  • Heller, P. & Hollabaugh, M. (1992). Teaching problem solving through cooperative grouping. Part 2: Designing problems and structuring groups. American Journal of Physics, 60, 637–644.
  • Hofstein, A. & Kesner, M. (2006). Industrial chemistry and school chemistry: Making chemistry studies more relevant. International Journal of Science Education, 28(9), 1017-1039.
  • Holman, J. & Pilling, G. (2004). Thermodynamics in context: a case study of contextualized teaching for undergraduates. Journal of Chemical Education, 81(3), 373-375.
  • Ingram, S. J. (2003). The effects of contextual learning ınstruction on science achievement of male and female tenth grade students. Unpublished PhD Thesis, University of South Alabama, The Graduate Faculty, South Alabama.
  • Janiuk , R. M. (1993). The process of learning chemistry: A review of the studies. Journal of Chemical Education, 70(10), 828-829.
  • King, D. & Ritchie, S. M. (2007). Implementing a context-based approach in a chemistry class: successes and dilemmas, Paper presented at the annual meeting of the National Association for Research in Science Teaching, New Orleans, LA: April.
  • Knecht, K. (1971). Fizik ve matematik öğretiminin koordinasyonu hakkında, bugünkü fizik öğretimi, Çeviren B. Örnekol, Milli Eğitim Basım Evi, İstanbul.
  • Kurnaz, M. A. (2013). An investigation of physics teachers’ perceptions of context based physics problems. Kastamonu Education Journal, 21(1), 375-390.
  • Linn, R. L. & Gronlund, N. E. (1995). Measurement and assessment in teaching. Prentice Hall. USA.
  • Matsuuar, T. & Iiri, Y. (2002). The ımportance of making right knowledge aboutradiation popular-activity of “radiation education forum”. http://www.irpa.net/irpa10/cdrom/01306.pdf son erişim: 20 Nisan 2015.
  • Max, G. (1993). Everyday risk. Physics Education, 28, 22-25.
  • Mertler, C. A. (2001). Designing scoring rubrics for your classroom.practical assessment. Research & Evaluation, 7(25).
  • Morgil, İ., Yılmaz, A. & Uludağ, N. (2004). Lise 2 kimya ders kitabında yer alan radyoaktivite konusunun incelenmesi, öğrencilerin bu konudaki bilgilerinin araştırılması ve öneriler. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 27, 206-215.
  • Moskal, B. M. (2000). Scoring rubrics: What, when and how?. Practical assessment. Research & Evaluation. 7(3).
  • National ministry Education. (2012). Ortaöğretim fizik ders kitabi. Beşinci Baskı. Ankara: Milli Eğitim Bakanlığı.
  • Park, J. & Lee, L. (2004). Analyzing cognitive and non-cognitive factors involved in the pro-cess of physics problem-solving in an everyday context. International Journal of Science Education, 29, 1577–1595.
  • Pilot, A. & Bulte, A. (2006). Why do you “need-to-know”: Context-Based Education. International Journal of Science Education, 28(9), 953-956.
  • Potter, N. M. & Overton, T. L. (2006). Chemistry in sport: Context-based e-learning in chemistry. Chemistry Education Research and Practice, 7, 195-202.
  • Prather, E. E. & Harrington R. R. (2001). Students understanding of ionising radiation and radioactivity. Journal of College Science Teaching, 31(2), 89-93.
  • Ramsden, J. (1997). How does a context-based approach infuence understanding of key chemical ideas at 16+?. Internotional Journal of Science Education, 19, 657-710.
  • Rayner, A. (2005). Reflections on context-based science teaching: A case study of physics for students of physiotherapy. Poster Presentation. UniServe Science Blended Learning Symposium Proceedings. 169-172. http://science.uniserve.edu.au/pubs/procs/wshop10/2005Rayner.pdf son erişim: 20.04.2015
  • Rennie, L. J. & Parker, L. H. (1996). Placing physics problems in real-life context: students' reactions and performance. Australian Science Teachers Journal, 42(1), 55-59.
  • Review. (2003). A systematic review of the effects of context-based and Science- Technology-Society (STS) approaches in the teaching of secondary science.TTA- supported Science Review Group. The EPPI-Centre is part of the Social Science Research Unit, Institute of Education, University of London.
  • Ronneau, C. (1990). Radioactivitiy: A natural phenomenon. Journal of Chemical Education, 67(9), 736-737.
  • Sözbilir, M., Sadi, S., Kutu, H. & Yıldırım, A. (2007). Kimya eğitiminde içeriğe/bağlama dayalı (context-based) öğretim yaklaşımı ve dünyadaki uygulamaları, I. Ulusal Kimya Eğitimi Kongresi (s. 108). İstanbul: Türkiye.
  • Stolk, M. J., Bulte, A. M. W., de Jong, O. & Pilot, A. (2009). Towards a framework for a professional development programme: Empowering teachers for context-based chemistry education. Chemistry Education: Research and Practice, 10, 164–175.
  • Taasoobshirazi, G. & Carr, M. (2008). A review and critique of context-based physics instruction and assessment. Educational Research Review, 3, 155-167.
  • TLA, (2015). http://www.tdk.gov.tr/index.php?option=com_gts&arama=gts&guid=TDK.GTS.553f85f684f180.17727322 Access date 28.04.2015.
  • Tekbıyık, A. & Akdeniz, A. R. (2010). An investigation on the comparison of context based and traditional physics problems. Necatibey Faculty of Education Electronic Journal of Science and Mathematics Education, 4(1), 123-140.
  • Truemper, C. M. (2004). Using scoring rubrics to facilitate assessment and evaluation of graduate-level nursing students. Journal of Nursing Education, 43(12).
  • Tuncel, G. (2011). Sosyal bilgiler dersinde rubriklerin etkili kullanımı. Marmara Coğrafya Dergisi, 23, 213-233.
  • Ültay, E. (2012). Implementing REACT strategy in a context-based physics class: Impulse and momentum example. Energy Education Science and Technology Part B: Social and Educational Studies, 4(1), 233-240.
  • Ültay, E. (2014). Investigating the effect of the activities based on explanation assisted REACT strategy in context-based learning approach on impulse, momentum and collisions. Unpublished PhD Thesis, Karadeniz Technical University, Trabzon, TURKEY.
  • Ültay, E. & Ültay, N. (2014). Context-based physics studies: A thematic review of the literature. H. U. Journal of Education, 29(3), 197-219.
  • Ültay, N. (2012). Designing, Implementing and comparing “acids and bases” instructional tasks based on REACT strategy and 5E model. Unpublished PhD Thesis, Karadeniz Technical University, Trabzon, TURKEY.
  • Ültay, N. & Çalık, M. (2012). A thematic review of studies into the effectiveness of context-based chemistry curricula. Journal of Science Education and Technology, 21(6), 686-701.
  • Ültay, N. (2015). The effect of concept cartoons embedded within context-based chemistry: Chemical bonding. Journal of Baltic Science Education, 14(1), 96-108.
  • Ültay, N. & Çalık, M. (2011). Distinguishing 5E model from REACT strategy: An example of ‘acids and bases’ topic. Necatibey Faculty of Education Electronic Journal of Science and Mathematics Education, 5(2), 199-220.
  • Ültay, N., Durukan, Ü. G. & Ültay, E. (2015). Evaluation of the effectiveness of conceptual change texts in the REACT strategy. Chemistry Education Research and Practice, 16(1), 22-38.
  • Wilkinson, J. W. (1999). The contextual approach to teaching physics. Australian Science Teachers Journal, 45(4), 43.
  • Williams, D. H. (1995). Successes and techniques associated with teaching the chemistry of radioactive wastes. Journal of Chemical Education, 72(11), 971-973.
  • Yavuz, I. & Kepçeoğlu, I. (2011). Bağıntı konusunda bağlam temelli ile geleneksel öğretimin öğrencilerin başarıları üzerinde etkilerinin incelenmesi. İstanbul Aydın Üniversitesi Fen Bilimleri Dergisi, 8(3), 143-166.
There are 67 citations in total.

Details

Journal Section Makaleler
Authors

Neslihan Ültay

Necla Dönmez Usta

Publication Date March 24, 2016
Submission Date December 26, 2015
Published in Issue Year 2016 Volume: 12 Issue: 2

Cite

APA Ültay, N., & Dönmez Usta, N. (2016). Investigating Prospective Teachers’ Ability to Write Context-Based Problems / Öğretmen Adaylarının Bağlam Temelli Problem Yazabilme Becerilerinin Belirlenmesi. Eğitimde Kuram Ve Uygulama, 12(2), 447-463.