Research Article
BibTex RIS Cite
Year 2021, Volume: 5 Issue: 3, 606 - 613, 30.12.2021
https://doi.org/10.46519/ij3dptdi.962015

Abstract

References

  • 1. Sharma S., Vates U. K., Bansal A., “Parametric optimization in wire EDM of D2 tool steel using Taguchi method”, Materials Today: Proceedings, Vol. 45, Pages 757-763, 2021.
  • 2. Zakaria K., Ismail Z., Redzuan N., “Dalgarno K.W., “Effect of wire EDM cutting parameters for evaluating of Additive Manufacturing Hybrid Metal Material”, Procedia Manufacturing, Vol. 2, Pages 532-537, 2015.
  • 3. Lexcellent C., “Shape memory alloys handbook”, Pages 230-326, Wiley, London, 2013.
  • 4. Antonucci V., Martone A., “Phenomenology of shape memory alloys, Shape memory alloy engineering”, ISBN 978-0-08-099920-3, Pages 33-56, Elsevier, 2015.
  • 5. Engeberg E.D., Dilibal S., Vatani M., Choi J., Lavery J., “Anthropomorphic finger antagonistically actuated by SMA plates”, Bioinspiration Biomimetics, Vol. 10, 2015.
  • 6. Sun L., Huang W. M., Ding Z., Zhao Y., Wang C.C., Purnawali H., Tang C., “Stimulus-responsive shape memory materials: A review”, Materials and Design, Vol. 33, Pages 577-640, 2012.
  • 7. Xu X., Lin X., Yang M., Chen J., Huang W., “Microstructure evaluation in laser solid forming of Ti–50 wt% Ni alloy”, Journal of Alloys and Compounds, Vol. 480, Pages 782-787, 2009.
  • 8. Tan L, Dodd R.A., Crone W.C., “Corrosion and wear-corrosion behavior of NiTi modified by plasma source ion implantation”, Biomaterials, Vol. 24, Pages 3931-3939, 2003.
  • 9. Sadrnezhaad S.K., Ahmadi E., Malekzadeh M., “Mechanism of reaction of molten NiTi with EBM graphite crucible”, Materials Science and Technology, Vol. 25, Pages 699-706, 2009.
  • 10. Sames W., Unocic K.A., Dehoff R.R., Lolla T., Babu S.S., “Thermal effects on microstructural heterogeneity of Inconel 718 materials fabricated by electron beam melting”, J. Mater. Res., Vol. 29, pp. 1920-1930, 2014.
  • 11. Dilibal S., “Stabilized actuation of a novel NiTi shape memory alloy actuated flexible structure under thermal loading”. Materiali in Tehnologije, Vol. 5, Pages 599-605, 2018.
  • 12. Mwangi J.W., Nguyen L.T., Bui V.D., Berger T., Zeidler H., Schubert A., “Nitinol manufacturing and micromachining: A review of processes and their suitability in processing medical-grade nitinol”, Journal of Manufacturing Processes, Vol. 38, Pages 355-369, 2019.
  • 13. Ozaner O.C., Dursun G., Akbulut G., “Effects of wire-EDM parameters on the surface integrity and mechanical characteristics of additively manufactured Inconel 939”, Materials Today: Proceedings, Vol. 38, Pages 1861-1865, 2021.
  • 14. Naveed N., “Experimental study of the effects of wire EDM on the characteristics of ferritic steel, at a micro-scale on the contour cut surface”, Metall. Res. Technol., Vol. 115, Pages 413-424, 2018.
  • 15. Tosun N., Cogun C., Inan A., “The effect of cutting parameters on workpiece surface roughness in wire EDM. Machining Science and Technology”, Vol. 7, Pages 209–219, 2003.
  • 16. Altug-Peduk G., Dilibal S., Harrysson O., Ozbek S., West H., “Characterization of Ni–Ti alloy powders for use in additive manufacturing”, Russian Journal of Non-Ferrous Metals”, Vol. 59, Pages 433-439, 2018.
  • 17. Altug-Peduk G., Dilibal S., Harrysson O., Ozbek S., “Experimental investigation on the EBM-based additively manufactured prismatic nickel–titanium SMA components”, Russian Journal of Non-Ferrous Metals Vol. 62, Paged 357–367, 2021.
  • 18. Roth R., Coemert S., Burkhardt S., Rodewald K.S., Lueth T.C., “A Process towards eliminating cytotoxicity by removal of surface contamination from electrical discharge machined Nitinol”, Procedia CIRP, Vol. 89, Pages 45-51, 2020.
  • 19. Roy B.K., Kumara A., Sahua D.R., Roy A.M., “Wire electrical discharge machining characteristics of Nitinol-60 shape memory alloy”, Materials Today: Proceedings, Vol. 22, Pages 2860–2869, 2020.
  • 20. Abhilash P.M., Chakradhar D., “Failure detection and control for wire EDM process using multiple sensors”, CIRP Journal of Manufacturing Science and Technology, Vol. 33, Pages 315–326, 2021.
  • 21. Zeng Z., Cong B.Q., Oliveira J.P., Ke W.C, Schell N., Peng B., Qi Z.W., Ge F.G, Zhang W., Ao S.S., “Wire and arc additive manufacturing of a Ni-rich NiTi shape memory alloy: Microstructure and mechanical properties”, Additive Manufacturing, Vol. 32, Pages 1-10, 2020.
  • 22. Naresh C., Bose P.S.C., Rao C.S.P., “ANFIS based predictive model for wire edm responses involving material removal rate and surface roughness of Nitinol alloy”, Materials Today: Proceedings, Vol. 33, Pages 93-101, 2020.
  • 23. Prasad A.V.S R., Ramji K., Kolli M., “An experimental investigation on machining parameters of titanium alloy using WEDM”, Materials Today: Proceedings, Vol.18, Pages 12-16, 2019.

EFFECT OF WIRE ELECTRICAL DISCHARGE MACHINING ON THE SURFACE OF EBM-ADDITIVE MANUFACTURED NITI ALLOYS

Year 2021, Volume: 5 Issue: 3, 606 - 613, 30.12.2021
https://doi.org/10.46519/ij3dptdi.962015

Abstract

Nickel-titanium (NiTi) shape memory alloys are used in varied engineering products, such as biomedical device and mechatronic actuator applications. The conventional machining technology are utilized in the limited fields due to their effects on the hardness and brittleness of the machined alloys. However, the wire electrical discharge machining (WEDM) technology is one of the most preferred post-processing tool to obtain a surface with high quality. The electrical current and voltage values with pulse on and pulse off time are the crucial parameters for WEDM. These parameters should be optimized before wire electrical discharge machining process. Electron beam melting (EBM)-based additive manufacturing of the nickel-titanium powders provides obtaining bulk NiTi shape memory alloys using high energy electron beams. In this study, the application of WEDM which is used as a post-processing tool is evaluated for the EBM-based additive manufactured NiTi samples. Additionally, the scanning electron microscopy results of the wire electrical discharge machined NiTi samples are carefully investigated.

References

  • 1. Sharma S., Vates U. K., Bansal A., “Parametric optimization in wire EDM of D2 tool steel using Taguchi method”, Materials Today: Proceedings, Vol. 45, Pages 757-763, 2021.
  • 2. Zakaria K., Ismail Z., Redzuan N., “Dalgarno K.W., “Effect of wire EDM cutting parameters for evaluating of Additive Manufacturing Hybrid Metal Material”, Procedia Manufacturing, Vol. 2, Pages 532-537, 2015.
  • 3. Lexcellent C., “Shape memory alloys handbook”, Pages 230-326, Wiley, London, 2013.
  • 4. Antonucci V., Martone A., “Phenomenology of shape memory alloys, Shape memory alloy engineering”, ISBN 978-0-08-099920-3, Pages 33-56, Elsevier, 2015.
  • 5. Engeberg E.D., Dilibal S., Vatani M., Choi J., Lavery J., “Anthropomorphic finger antagonistically actuated by SMA plates”, Bioinspiration Biomimetics, Vol. 10, 2015.
  • 6. Sun L., Huang W. M., Ding Z., Zhao Y., Wang C.C., Purnawali H., Tang C., “Stimulus-responsive shape memory materials: A review”, Materials and Design, Vol. 33, Pages 577-640, 2012.
  • 7. Xu X., Lin X., Yang M., Chen J., Huang W., “Microstructure evaluation in laser solid forming of Ti–50 wt% Ni alloy”, Journal of Alloys and Compounds, Vol. 480, Pages 782-787, 2009.
  • 8. Tan L, Dodd R.A., Crone W.C., “Corrosion and wear-corrosion behavior of NiTi modified by plasma source ion implantation”, Biomaterials, Vol. 24, Pages 3931-3939, 2003.
  • 9. Sadrnezhaad S.K., Ahmadi E., Malekzadeh M., “Mechanism of reaction of molten NiTi with EBM graphite crucible”, Materials Science and Technology, Vol. 25, Pages 699-706, 2009.
  • 10. Sames W., Unocic K.A., Dehoff R.R., Lolla T., Babu S.S., “Thermal effects on microstructural heterogeneity of Inconel 718 materials fabricated by electron beam melting”, J. Mater. Res., Vol. 29, pp. 1920-1930, 2014.
  • 11. Dilibal S., “Stabilized actuation of a novel NiTi shape memory alloy actuated flexible structure under thermal loading”. Materiali in Tehnologije, Vol. 5, Pages 599-605, 2018.
  • 12. Mwangi J.W., Nguyen L.T., Bui V.D., Berger T., Zeidler H., Schubert A., “Nitinol manufacturing and micromachining: A review of processes and their suitability in processing medical-grade nitinol”, Journal of Manufacturing Processes, Vol. 38, Pages 355-369, 2019.
  • 13. Ozaner O.C., Dursun G., Akbulut G., “Effects of wire-EDM parameters on the surface integrity and mechanical characteristics of additively manufactured Inconel 939”, Materials Today: Proceedings, Vol. 38, Pages 1861-1865, 2021.
  • 14. Naveed N., “Experimental study of the effects of wire EDM on the characteristics of ferritic steel, at a micro-scale on the contour cut surface”, Metall. Res. Technol., Vol. 115, Pages 413-424, 2018.
  • 15. Tosun N., Cogun C., Inan A., “The effect of cutting parameters on workpiece surface roughness in wire EDM. Machining Science and Technology”, Vol. 7, Pages 209–219, 2003.
  • 16. Altug-Peduk G., Dilibal S., Harrysson O., Ozbek S., West H., “Characterization of Ni–Ti alloy powders for use in additive manufacturing”, Russian Journal of Non-Ferrous Metals”, Vol. 59, Pages 433-439, 2018.
  • 17. Altug-Peduk G., Dilibal S., Harrysson O., Ozbek S., “Experimental investigation on the EBM-based additively manufactured prismatic nickel–titanium SMA components”, Russian Journal of Non-Ferrous Metals Vol. 62, Paged 357–367, 2021.
  • 18. Roth R., Coemert S., Burkhardt S., Rodewald K.S., Lueth T.C., “A Process towards eliminating cytotoxicity by removal of surface contamination from electrical discharge machined Nitinol”, Procedia CIRP, Vol. 89, Pages 45-51, 2020.
  • 19. Roy B.K., Kumara A., Sahua D.R., Roy A.M., “Wire electrical discharge machining characteristics of Nitinol-60 shape memory alloy”, Materials Today: Proceedings, Vol. 22, Pages 2860–2869, 2020.
  • 20. Abhilash P.M., Chakradhar D., “Failure detection and control for wire EDM process using multiple sensors”, CIRP Journal of Manufacturing Science and Technology, Vol. 33, Pages 315–326, 2021.
  • 21. Zeng Z., Cong B.Q., Oliveira J.P., Ke W.C, Schell N., Peng B., Qi Z.W., Ge F.G, Zhang W., Ao S.S., “Wire and arc additive manufacturing of a Ni-rich NiTi shape memory alloy: Microstructure and mechanical properties”, Additive Manufacturing, Vol. 32, Pages 1-10, 2020.
  • 22. Naresh C., Bose P.S.C., Rao C.S.P., “ANFIS based predictive model for wire edm responses involving material removal rate and surface roughness of Nitinol alloy”, Materials Today: Proceedings, Vol. 33, Pages 93-101, 2020.
  • 23. Prasad A.V.S R., Ramji K., Kolli M., “An experimental investigation on machining parameters of titanium alloy using WEDM”, Materials Today: Proceedings, Vol.18, Pages 12-16, 2019.
There are 23 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering
Journal Section Research Article
Authors

Gozde Sultan Altug Peduk 0000-0001-8351-1719

Savaş Dilibal 0000-0003-4777-7995

Uğur Gürol 0000-0002-3205-7226

Publication Date December 30, 2021
Submission Date July 3, 2021
Published in Issue Year 2021 Volume: 5 Issue: 3

Cite

APA Altug Peduk, G. S., Dilibal, S., & Gürol, U. (2021). EFFECT OF WIRE ELECTRICAL DISCHARGE MACHINING ON THE SURFACE OF EBM-ADDITIVE MANUFACTURED NITI ALLOYS. International Journal of 3D Printing Technologies and Digital Industry, 5(3), 606-613. https://doi.org/10.46519/ij3dptdi.962015
AMA Altug Peduk GS, Dilibal S, Gürol U. EFFECT OF WIRE ELECTRICAL DISCHARGE MACHINING ON THE SURFACE OF EBM-ADDITIVE MANUFACTURED NITI ALLOYS. IJ3DPTDI. December 2021;5(3):606-613. doi:10.46519/ij3dptdi.962015
Chicago Altug Peduk, Gozde Sultan, Savaş Dilibal, and Uğur Gürol. “EFFECT OF WIRE ELECTRICAL DISCHARGE MACHINING ON THE SURFACE OF EBM-ADDITIVE MANUFACTURED NITI ALLOYS”. International Journal of 3D Printing Technologies and Digital Industry 5, no. 3 (December 2021): 606-13. https://doi.org/10.46519/ij3dptdi.962015.
EndNote Altug Peduk GS, Dilibal S, Gürol U (December 1, 2021) EFFECT OF WIRE ELECTRICAL DISCHARGE MACHINING ON THE SURFACE OF EBM-ADDITIVE MANUFACTURED NITI ALLOYS. International Journal of 3D Printing Technologies and Digital Industry 5 3 606–613.
IEEE G. S. Altug Peduk, S. Dilibal, and U. Gürol, “EFFECT OF WIRE ELECTRICAL DISCHARGE MACHINING ON THE SURFACE OF EBM-ADDITIVE MANUFACTURED NITI ALLOYS”, IJ3DPTDI, vol. 5, no. 3, pp. 606–613, 2021, doi: 10.46519/ij3dptdi.962015.
ISNAD Altug Peduk, Gozde Sultan et al. “EFFECT OF WIRE ELECTRICAL DISCHARGE MACHINING ON THE SURFACE OF EBM-ADDITIVE MANUFACTURED NITI ALLOYS”. International Journal of 3D Printing Technologies and Digital Industry 5/3 (December 2021), 606-613. https://doi.org/10.46519/ij3dptdi.962015.
JAMA Altug Peduk GS, Dilibal S, Gürol U. EFFECT OF WIRE ELECTRICAL DISCHARGE MACHINING ON THE SURFACE OF EBM-ADDITIVE MANUFACTURED NITI ALLOYS. IJ3DPTDI. 2021;5:606–613.
MLA Altug Peduk, Gozde Sultan et al. “EFFECT OF WIRE ELECTRICAL DISCHARGE MACHINING ON THE SURFACE OF EBM-ADDITIVE MANUFACTURED NITI ALLOYS”. International Journal of 3D Printing Technologies and Digital Industry, vol. 5, no. 3, 2021, pp. 606-13, doi:10.46519/ij3dptdi.962015.
Vancouver Altug Peduk GS, Dilibal S, Gürol U. EFFECT OF WIRE ELECTRICAL DISCHARGE MACHINING ON THE SURFACE OF EBM-ADDITIVE MANUFACTURED NITI ALLOYS. IJ3DPTDI. 2021;5(3):606-13.

download

International Journal of 3D Printing Technologies and Digital Industry is lisenced under Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı