Review
BibTex RIS Cite

A research on capture, storage and utilization of released carbon for a sustainable green development

Year 2023, Volume: 12 Issue: 2, 386 - 394, 15.04.2023
https://doi.org/10.28948/ngumuh.1145904

Abstract

Today, global warming has reached very serious dimensions. Many sectors such as fossil fuel power plants, iron and steel industry and heavy industry have a great share in this. Therefore, the transition of these sectors, which are the main elements of the global warming problem, to clean energy production is very important. For this reason, various technologies and approaches need to be developed in order to successfully complete the decarbonization process and ensure sustainable, competitive development. Among these technologies, carbon capture, utilization and storage technology (CCUS) is a technology that will ensure decarbonization in the near and medium term in order to reduce carbon emissions. In this study, this technology was discussed to ensure that our country reaches the 2053 green development goal. Accordingly, a detailed literature search on the design of the optimum CCUS supply chain network was conducted and gaps in the literature were identified. As a result of the analyzes, suggestions were presented for an integrated handling of a CCUS supply chain network in our country. It is thought that this study will shed light on researchers for future studies.

References

  • A. S. Brouwer, M. van den Broek, W. Zappa, W. C. Turkenburg, and A. Faaij, Least-cost options for integrating intermittent renewables in low-carbon power systems, Applied Energy,161, 48–74, 2016, https://doi.org/10.1016/j.apenergy.2015.09.090
  • M. F. Hasan, M. S. Zantye, & M. K. Kazi, Challenges and opportunities in carbon capture, utilization and storage: A process systems engineering perspective, Computers & Chemical Engineering, 166,1-26,2022, 107925. https://doi.org/10.1016/ j.compchemeng.2022.107925
  • M. Wara, Measuring the clean development mechanism’s performance and potential, UCLA Law Review, 55(6),1759–1803, 2008.
  • UNFCCC., Paris Agreement, United Nations Framework Convention on Climate Change, 2015. Erişim adresi: https://unfccc.int/process-and-meetings/the-paris-agreement
  • T.C. Ticaret Bakanlığı, Yeşil Mutabakat Eylem Planı, 2021.
  • The World Bank (2020). Pricing carbon. Erişim adresi:https://www.worldbank.org/en/programs/pricing-carbon
  • TÜİK, Sera Gazı Emisyon İstatistikleri-1990-2019, 2021. Erişim adresi: https://data.tuik. gov.tr/Bulten/Index?p=Sera-Gazi-Emisyon-Istatistikleri-1990-2020-45862
  • T.C. Enerji ve Tabii Kaynaklar Bakanlığı, 2019 Yılı Ulusal Enerji Denge Tablosu, 2021.
  • BP, Statistical Review of World Energy – Electricity Section, 2020.
  • EÜAŞ, 2020 Elektrik Üretimi ve Ticareti Sektör Raporu, 2021.
  • UNFCCC., Draft Decision 1/CP.26. Draft COP Decision Proposed by the President, 2021.
  • International Energy Agency (IEA), World Energy Outlook 2020, 2020.
  • International Energy Agency (IEA), Legal and Regulatory Frameworks for CCUS, 2022a. Erişim Adresi:https://www.iea.org/reports/legal-and-regulatory-frameworks-for-ccus
  • International Energy Agency (IEA), Carbon Capture, Utilization and Storage, 2022b. Erişim Adresi: https://www.iea.org/reports/carbon-capture-utilisation-and-storage-2
  • J. Ambrose, What Is Carbon Capture, Usage And Storage – And Can It Trap, Emissions?, Theguardian, 2020. Erişim adresi: https://www.theguardian. com/environment/2020/sep/24/what-is-carbon-capture-usage-and-storage-and-can-it-trap-emissions
  • R. S. Middleton and J. M. Bielicki, A scalable infrastructure model for carbon capture and storage: SimCCS, Energy Policy, 37(3),1052–1060, 2009, https://doi.org/10.1016/j.enpol.2008.09.049.
  • R. T. J. Porter, M. Fairweather, C. Kolster, N. Mac Dowell, N. Shah, and R. M. Woolley, Cost and performance of some carbon capture technology options for producing different quality CO2 product streams, International Journal of Greenhouse Gas Control, 57, 185–195, 2017, https://doi.org/ 10.1016/j.ijggc.2016.11.020.
  • H. Lu, X. Ma, K. Huang, L. Fu, and M. Azimi, Carbon dioxide transport via pipelines: A systematic review, Journal of Cleaner Production, 266, 121994, 2020, https://doi.org/10.1016/j.jclepro.2020.121994.
  • Global CCS Institute.,Accelerating the Uptake of CCS: Industrial Use of Captured Carbon Dioxide, Parsons Brickerhoff, New York, NY, USA, 2011.
  • Z. Zhang et al.,Recent advances in carbon dioxide utilization, Renewable and Sustainable Energy Reviews, 125, 2020. https://doi.org/10.1016/ j.rser.2020.109799.
  • P. Markewitz et al., Worldwide innovations in the development of carbon capture technologies and the utilization of CO2, Energy and Environmental Science, 5(6), 7281–7305, 2012. https://doi.org/ 10.1039/C2EE03403D.
  • J. H. Han, J. H. Ryu, and I. B. Lee, A preliminary infrastructure design to use fossil fuels with carbon capture and storage and renewable energy systems, International Journal of Hydrogen Energy, vol. 37(22), 17321–17335, 2012, https://doi.org/10.1016/ j.ijhydene.2012.08.117
  • Y. Huang, S. Rebennack, and Q. P. Zheng, Techno-economic analysis and optimization models for carbon capture and storage: A survey, Energy Systems, 4(4), 315–353, 2013, https://doi.org/ 10.1007/s12667-013-0086-0.
  • J.-Y. Lee, R. R. Tan, and C.-L. Chen, A unified model for the deployment of carbon capture and storage, Applied Energy, 121, 140–148, 2014, https://doi.org/10.1016/j.apenergy.2014.01.080.
  • S. Y. Lee, J. U. Lee, I. B. Lee, and J. Han, Design under uncertainty of carbon capture and storage infrastructure considering cost, environmental impact, and preference on risk,Applied Energy, 189, 725–738, 2017, https://doi.org/10.1016/ J.APENERGY.2016.12.066.
  • S. Zhang, L. Liu, L. Zhang, Y. Zhuang, and J. Du, An optimization model for carbon capture utilization and storage supply chain: A case study in Northeastern China, Applied Energy, 231,194–206, 2018, https://doi.org/10.1016/J.APENERGY.2018.09.129.
  • C. Kim, K. Kim, J. Kim, U. Ahmed, and C. Han, Practical deployment of pipelines for the CCS network in critical conditions using MINLP modelling and optimization: A case study of South Korea, International Journal of Greenhouse Gas Control, 73, 79–94, 2018, https://doi.org/ 10.1016/J.IJGGC.2018.03.024.
  • F. d’Amore, P. Mocellin, C. Vianello, G. Maschio, and F. Bezzo, Economic optimisation of European supply chains for CO2 capture, transport and sequestration, including societal risk analysis and risk mitigation measures, Applied Energy, 223, 401–415, 2018, https://doi.org/10.1016/J.APENERGY.2018. 04.043.
  • S. M. Jarvis and S. Samsatli, Technologies and infrastructures underpinning future CO2 value chains: A comprehensive review and comparative analysis, Renewable and Sustainable Energy Reviews, 85, 46–68, 2018. https://doi.org/ 10.1016/j.rser.2018.01.007.
  • T. Pieri, A. Nikitas, A. Castillo-Castillo, and A. Angelis-Dimakis, Holistic assessment of carbon capture and utilization value chains, Environments - MDPI, 5(10), 1–17, 2018. https://doi.org/ 10.3390/environments5100108.
  • S. Ağralı, F. G. Üçtuğ, and B. A. Türkmen, An optimization model for carbon capture & storage/utilization vs. carbon trading: A case study of fossil-fired power plants in Turkey, Journal of Environmental Management, 215, 305–315, 2018, https://doi.org/10.1016/j.jenvman.2018.03.054.
  • S. Zhang, Y. Zhuang, L. Liu, L. Zhang, and J. Du, Risk management optimization framework for the optimal deployment of carbon capture and storage system under uncertainty, Renewable and Sustainable Energy Reviews, 113, 1-13, 2019, https://doi.org /10.1016/j.rser.2019.109280.
  • G. Leonzio, P. U. Foscolo, and E. Zondervan, An outlook towards 2030: Optimization and design of a CCUS supply chain in Germany, Computers and Chemical Engineering, 125, 499–513, 2019, https://doi.org/10.1016/j.compchemeng.2019.04.001
  • G. Leonzio and E. Zondervan, Analysis and optimization of carbon supply chains integrated to a power to gas process in Italy, Journal of Cleaner Production, 269, 1-18, 122172, 2020a, https://doi.org/10.1016/j.jclepro.2020.122172
  • G. Leonzio, P. U. Foscolo, and E. Zondervan, Optimization of CCUS supply chains for some european countries under the uncertainty, Processes, 8(8), 1-29,2020b, https://doi.org/10.3390/pr8080960
  • Y. Huang et al., Investigation and optimization analysis on deployment of China coal chemical industry under carbon emission constraints,Applied Energy, 254, 1-15, 2019, https://doi.org/ 10.1016/j.apenergy.2019.113684
  • C. J. Quarton and S. Samsatli, The value of hydrogen and carbon capture, storage and utilisation in decarbonising energy: Insights from integrated value chain optimisation,Applied Energy, 257, 1-23, 2020, https://doi.org/10.1016/j.apenergy.2019.113936
  • S. Zhang, Y. Zhuang, R. Tao, L. Liu, L. Zhang, and J. Du, Multi-objective optimization for the deployment of carbon capture utilization and storage supply chain considering economic and environmental performance, Journal of Cleaner Production, 270, 1-15, 2020, https://doi.org/ 10.1016/j.jclepro.2020.122481
  • F. d’Amore, M. C. Romano, and F. Bezzo, Carbon capture and storage from energy and industrial emission sources: A Europe-wide supply chain optimisation, Journal of Cleaner Production, 290, 1-17, 2021, https://doi.org/10.1016/j.jclepro.2020. 125202
  • F. d’Amore, M. C. Romano, and F. Bezzo, Optimal design of European supply chains for carbon capture and storage from industrial emission sources including pipe and ship transport, International Journal of Greenhouse Gas Control, 109,1-16, 2021, https://doi.org/10.1016/j.ijggc.2021.103372
  • F. Niazvand, S. Kharrati, F. Khosravi, and A. Rastgou, Scenario-based assessment for optimal planning of multi-carrier hub-energy system under dual uncertainties and various scheduling by considering CCUS technology,Sustainable Energy Technologies and Assessments, 46, 1-18, 2021, https://doi.org/10.1016/j.seta.2021.101300
  • K. Balaji and M. Rabiei, Carbon dioxide pipeline route optimization for carbon capture, utilization, and storage: A case study for North-Central USA, Sustainable Energy Technologies and Assessments, 51, 1-15, 2022, https://doi.org/10.1016/j.seta. 2021.101900
  • V. S. Bjerketvedt, A. Tomasgard, and S. Roussanaly, Deploying a shipping infrastructure to enable carbon capture and storage from Norwegian industries, Journal of Cleaner Production, 333, 1-15, 2022, https://doi.org/10.1016/j.jclepro.2021.129586
  • V. Becattini, P. Gabrielli, C. Antonini, J. Campos, A. Acquilino, G. Sansavini, & M. Mazzotti, Carbon dioxide capture, transport and storage supply chains: Optimal economic and environmental performance of infrastructure rollout”, International Journal of Greenhouse Gas Control, 117, 1-18, 2022. https://doi.org/10.1016/j.ijggc.2022.103635
  • E. Okandan et al., Assessment of CO2 storage potential in turkey, modeling and a prefeasibility study for injection into an oil field, Energy Procedia, 4, 4849–4856, 2011, https://doi.org/10.1016/ j.egypro.2011.02.452

Sürdürülebilir yeşil bir kalkınma için salınan karbonun yakalanması, depolanması ve kullanımına yönelik bir araştırma

Year 2023, Volume: 12 Issue: 2, 386 - 394, 15.04.2023
https://doi.org/10.28948/ngumuh.1145904

Abstract

Günümüzde küresel ısınma çok ciddi boyutlara ulaşmıştır. Bunda başta fosil yakıtlı enerji santralleri olmak üzere, demir-çelik sanayisi, ağır sanayi gibi pek çok sektörün payı büyüktür. Dolayısıyla, küresel ısınma probleminin asıl unsurları olan bu sektörlerin temiz enerji üretimine geçişi çok önemlidir. Bu sebeple, karbonsuzlaşma sürecinin başarıyla tamamlanabilmesi ve sürdürülebilir, rekabetçi bir kalkınmanın sağlanabilmesi için çeşitli teknolojiler ve yaklaşımların geliştirilmesi gerekmektedir. Bu teknolojiler arasında yer alan karbon yakalama, kullanma ve depolama teknolojisi (CCUS- carbon capture, utilization and storage technology) karbon emisyonunu azaltma konusunda yakın ve orta vadede kesin ve hızlı bir şekilde karbonsuzlaşmayı sağlayacak bir teknoloji olarak karşımıza çıkmaktadır. Bu çalışmada ise ülkemizin Avrupa 2050 net sıfır emisyon hedefine ulaşmasını sağlamak için bu teknoloji ele alınmıştır. Bu doğrultuda optimum CCUS tedarik zinciri ağı tasarımı üzerine detaylı bir literatür araştırması yapılmış ve literatürde yer alan boşluklar tespit edilmiştir. Yapılan analizler sonucunda ülkemizde bir CCUS tedarik zinciri ağının bütünleşik bir şekilde ele alınabilmesi için öneriler sunulmuştur. Bu çalışmanın gelecekte yapılan çalışmalar için araştırmacılara ışık tutacağı düşünülmektedir.

References

  • A. S. Brouwer, M. van den Broek, W. Zappa, W. C. Turkenburg, and A. Faaij, Least-cost options for integrating intermittent renewables in low-carbon power systems, Applied Energy,161, 48–74, 2016, https://doi.org/10.1016/j.apenergy.2015.09.090
  • M. F. Hasan, M. S. Zantye, & M. K. Kazi, Challenges and opportunities in carbon capture, utilization and storage: A process systems engineering perspective, Computers & Chemical Engineering, 166,1-26,2022, 107925. https://doi.org/10.1016/ j.compchemeng.2022.107925
  • M. Wara, Measuring the clean development mechanism’s performance and potential, UCLA Law Review, 55(6),1759–1803, 2008.
  • UNFCCC., Paris Agreement, United Nations Framework Convention on Climate Change, 2015. Erişim adresi: https://unfccc.int/process-and-meetings/the-paris-agreement
  • T.C. Ticaret Bakanlığı, Yeşil Mutabakat Eylem Planı, 2021.
  • The World Bank (2020). Pricing carbon. Erişim adresi:https://www.worldbank.org/en/programs/pricing-carbon
  • TÜİK, Sera Gazı Emisyon İstatistikleri-1990-2019, 2021. Erişim adresi: https://data.tuik. gov.tr/Bulten/Index?p=Sera-Gazi-Emisyon-Istatistikleri-1990-2020-45862
  • T.C. Enerji ve Tabii Kaynaklar Bakanlığı, 2019 Yılı Ulusal Enerji Denge Tablosu, 2021.
  • BP, Statistical Review of World Energy – Electricity Section, 2020.
  • EÜAŞ, 2020 Elektrik Üretimi ve Ticareti Sektör Raporu, 2021.
  • UNFCCC., Draft Decision 1/CP.26. Draft COP Decision Proposed by the President, 2021.
  • International Energy Agency (IEA), World Energy Outlook 2020, 2020.
  • International Energy Agency (IEA), Legal and Regulatory Frameworks for CCUS, 2022a. Erişim Adresi:https://www.iea.org/reports/legal-and-regulatory-frameworks-for-ccus
  • International Energy Agency (IEA), Carbon Capture, Utilization and Storage, 2022b. Erişim Adresi: https://www.iea.org/reports/carbon-capture-utilisation-and-storage-2
  • J. Ambrose, What Is Carbon Capture, Usage And Storage – And Can It Trap, Emissions?, Theguardian, 2020. Erişim adresi: https://www.theguardian. com/environment/2020/sep/24/what-is-carbon-capture-usage-and-storage-and-can-it-trap-emissions
  • R. S. Middleton and J. M. Bielicki, A scalable infrastructure model for carbon capture and storage: SimCCS, Energy Policy, 37(3),1052–1060, 2009, https://doi.org/10.1016/j.enpol.2008.09.049.
  • R. T. J. Porter, M. Fairweather, C. Kolster, N. Mac Dowell, N. Shah, and R. M. Woolley, Cost and performance of some carbon capture technology options for producing different quality CO2 product streams, International Journal of Greenhouse Gas Control, 57, 185–195, 2017, https://doi.org/ 10.1016/j.ijggc.2016.11.020.
  • H. Lu, X. Ma, K. Huang, L. Fu, and M. Azimi, Carbon dioxide transport via pipelines: A systematic review, Journal of Cleaner Production, 266, 121994, 2020, https://doi.org/10.1016/j.jclepro.2020.121994.
  • Global CCS Institute.,Accelerating the Uptake of CCS: Industrial Use of Captured Carbon Dioxide, Parsons Brickerhoff, New York, NY, USA, 2011.
  • Z. Zhang et al.,Recent advances in carbon dioxide utilization, Renewable and Sustainable Energy Reviews, 125, 2020. https://doi.org/10.1016/ j.rser.2020.109799.
  • P. Markewitz et al., Worldwide innovations in the development of carbon capture technologies and the utilization of CO2, Energy and Environmental Science, 5(6), 7281–7305, 2012. https://doi.org/ 10.1039/C2EE03403D.
  • J. H. Han, J. H. Ryu, and I. B. Lee, A preliminary infrastructure design to use fossil fuels with carbon capture and storage and renewable energy systems, International Journal of Hydrogen Energy, vol. 37(22), 17321–17335, 2012, https://doi.org/10.1016/ j.ijhydene.2012.08.117
  • Y. Huang, S. Rebennack, and Q. P. Zheng, Techno-economic analysis and optimization models for carbon capture and storage: A survey, Energy Systems, 4(4), 315–353, 2013, https://doi.org/ 10.1007/s12667-013-0086-0.
  • J.-Y. Lee, R. R. Tan, and C.-L. Chen, A unified model for the deployment of carbon capture and storage, Applied Energy, 121, 140–148, 2014, https://doi.org/10.1016/j.apenergy.2014.01.080.
  • S. Y. Lee, J. U. Lee, I. B. Lee, and J. Han, Design under uncertainty of carbon capture and storage infrastructure considering cost, environmental impact, and preference on risk,Applied Energy, 189, 725–738, 2017, https://doi.org/10.1016/ J.APENERGY.2016.12.066.
  • S. Zhang, L. Liu, L. Zhang, Y. Zhuang, and J. Du, An optimization model for carbon capture utilization and storage supply chain: A case study in Northeastern China, Applied Energy, 231,194–206, 2018, https://doi.org/10.1016/J.APENERGY.2018.09.129.
  • C. Kim, K. Kim, J. Kim, U. Ahmed, and C. Han, Practical deployment of pipelines for the CCS network in critical conditions using MINLP modelling and optimization: A case study of South Korea, International Journal of Greenhouse Gas Control, 73, 79–94, 2018, https://doi.org/ 10.1016/J.IJGGC.2018.03.024.
  • F. d’Amore, P. Mocellin, C. Vianello, G. Maschio, and F. Bezzo, Economic optimisation of European supply chains for CO2 capture, transport and sequestration, including societal risk analysis and risk mitigation measures, Applied Energy, 223, 401–415, 2018, https://doi.org/10.1016/J.APENERGY.2018. 04.043.
  • S. M. Jarvis and S. Samsatli, Technologies and infrastructures underpinning future CO2 value chains: A comprehensive review and comparative analysis, Renewable and Sustainable Energy Reviews, 85, 46–68, 2018. https://doi.org/ 10.1016/j.rser.2018.01.007.
  • T. Pieri, A. Nikitas, A. Castillo-Castillo, and A. Angelis-Dimakis, Holistic assessment of carbon capture and utilization value chains, Environments - MDPI, 5(10), 1–17, 2018. https://doi.org/ 10.3390/environments5100108.
  • S. Ağralı, F. G. Üçtuğ, and B. A. Türkmen, An optimization model for carbon capture & storage/utilization vs. carbon trading: A case study of fossil-fired power plants in Turkey, Journal of Environmental Management, 215, 305–315, 2018, https://doi.org/10.1016/j.jenvman.2018.03.054.
  • S. Zhang, Y. Zhuang, L. Liu, L. Zhang, and J. Du, Risk management optimization framework for the optimal deployment of carbon capture and storage system under uncertainty, Renewable and Sustainable Energy Reviews, 113, 1-13, 2019, https://doi.org /10.1016/j.rser.2019.109280.
  • G. Leonzio, P. U. Foscolo, and E. Zondervan, An outlook towards 2030: Optimization and design of a CCUS supply chain in Germany, Computers and Chemical Engineering, 125, 499–513, 2019, https://doi.org/10.1016/j.compchemeng.2019.04.001
  • G. Leonzio and E. Zondervan, Analysis and optimization of carbon supply chains integrated to a power to gas process in Italy, Journal of Cleaner Production, 269, 1-18, 122172, 2020a, https://doi.org/10.1016/j.jclepro.2020.122172
  • G. Leonzio, P. U. Foscolo, and E. Zondervan, Optimization of CCUS supply chains for some european countries under the uncertainty, Processes, 8(8), 1-29,2020b, https://doi.org/10.3390/pr8080960
  • Y. Huang et al., Investigation and optimization analysis on deployment of China coal chemical industry under carbon emission constraints,Applied Energy, 254, 1-15, 2019, https://doi.org/ 10.1016/j.apenergy.2019.113684
  • C. J. Quarton and S. Samsatli, The value of hydrogen and carbon capture, storage and utilisation in decarbonising energy: Insights from integrated value chain optimisation,Applied Energy, 257, 1-23, 2020, https://doi.org/10.1016/j.apenergy.2019.113936
  • S. Zhang, Y. Zhuang, R. Tao, L. Liu, L. Zhang, and J. Du, Multi-objective optimization for the deployment of carbon capture utilization and storage supply chain considering economic and environmental performance, Journal of Cleaner Production, 270, 1-15, 2020, https://doi.org/ 10.1016/j.jclepro.2020.122481
  • F. d’Amore, M. C. Romano, and F. Bezzo, Carbon capture and storage from energy and industrial emission sources: A Europe-wide supply chain optimisation, Journal of Cleaner Production, 290, 1-17, 2021, https://doi.org/10.1016/j.jclepro.2020. 125202
  • F. d’Amore, M. C. Romano, and F. Bezzo, Optimal design of European supply chains for carbon capture and storage from industrial emission sources including pipe and ship transport, International Journal of Greenhouse Gas Control, 109,1-16, 2021, https://doi.org/10.1016/j.ijggc.2021.103372
  • F. Niazvand, S. Kharrati, F. Khosravi, and A. Rastgou, Scenario-based assessment for optimal planning of multi-carrier hub-energy system under dual uncertainties and various scheduling by considering CCUS technology,Sustainable Energy Technologies and Assessments, 46, 1-18, 2021, https://doi.org/10.1016/j.seta.2021.101300
  • K. Balaji and M. Rabiei, Carbon dioxide pipeline route optimization for carbon capture, utilization, and storage: A case study for North-Central USA, Sustainable Energy Technologies and Assessments, 51, 1-15, 2022, https://doi.org/10.1016/j.seta. 2021.101900
  • V. S. Bjerketvedt, A. Tomasgard, and S. Roussanaly, Deploying a shipping infrastructure to enable carbon capture and storage from Norwegian industries, Journal of Cleaner Production, 333, 1-15, 2022, https://doi.org/10.1016/j.jclepro.2021.129586
  • V. Becattini, P. Gabrielli, C. Antonini, J. Campos, A. Acquilino, G. Sansavini, & M. Mazzotti, Carbon dioxide capture, transport and storage supply chains: Optimal economic and environmental performance of infrastructure rollout”, International Journal of Greenhouse Gas Control, 117, 1-18, 2022. https://doi.org/10.1016/j.ijggc.2022.103635
  • E. Okandan et al., Assessment of CO2 storage potential in turkey, modeling and a prefeasibility study for injection into an oil field, Energy Procedia, 4, 4849–4856, 2011, https://doi.org/10.1016/ j.egypro.2011.02.452
There are 45 citations in total.

Details

Primary Language Turkish
Subjects Industrial Engineering
Journal Section Industrial Engineering
Authors

Sena Kumcu 0000-0002-9648-6281

Bahar Özyörük 0000-0001-5434-6697

Publication Date April 15, 2023
Submission Date July 20, 2022
Acceptance Date March 4, 2023
Published in Issue Year 2023 Volume: 12 Issue: 2

Cite

APA Kumcu, S., & Özyörük, B. (2023). Sürdürülebilir yeşil bir kalkınma için salınan karbonun yakalanması, depolanması ve kullanımına yönelik bir araştırma. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 12(2), 386-394. https://doi.org/10.28948/ngumuh.1145904
AMA Kumcu S, Özyörük B. Sürdürülebilir yeşil bir kalkınma için salınan karbonun yakalanması, depolanması ve kullanımına yönelik bir araştırma. NOHU J. Eng. Sci. April 2023;12(2):386-394. doi:10.28948/ngumuh.1145904
Chicago Kumcu, Sena, and Bahar Özyörük. “Sürdürülebilir yeşil Bir kalkınma için salınan Karbonun yakalanması, Depolanması Ve kullanımına yönelik Bir araştırma”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12, no. 2 (April 2023): 386-94. https://doi.org/10.28948/ngumuh.1145904.
EndNote Kumcu S, Özyörük B (April 1, 2023) Sürdürülebilir yeşil bir kalkınma için salınan karbonun yakalanması, depolanması ve kullanımına yönelik bir araştırma. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12 2 386–394.
IEEE S. Kumcu and B. Özyörük, “Sürdürülebilir yeşil bir kalkınma için salınan karbonun yakalanması, depolanması ve kullanımına yönelik bir araştırma”, NOHU J. Eng. Sci., vol. 12, no. 2, pp. 386–394, 2023, doi: 10.28948/ngumuh.1145904.
ISNAD Kumcu, Sena - Özyörük, Bahar. “Sürdürülebilir yeşil Bir kalkınma için salınan Karbonun yakalanması, Depolanması Ve kullanımına yönelik Bir araştırma”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12/2 (April 2023), 386-394. https://doi.org/10.28948/ngumuh.1145904.
JAMA Kumcu S, Özyörük B. Sürdürülebilir yeşil bir kalkınma için salınan karbonun yakalanması, depolanması ve kullanımına yönelik bir araştırma. NOHU J. Eng. Sci. 2023;12:386–394.
MLA Kumcu, Sena and Bahar Özyörük. “Sürdürülebilir yeşil Bir kalkınma için salınan Karbonun yakalanması, Depolanması Ve kullanımına yönelik Bir araştırma”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 12, no. 2, 2023, pp. 386-94, doi:10.28948/ngumuh.1145904.
Vancouver Kumcu S, Özyörük B. Sürdürülebilir yeşil bir kalkınma için salınan karbonun yakalanması, depolanması ve kullanımına yönelik bir araştırma. NOHU J. Eng. Sci. 2023;12(2):386-94.

23135