Research Article
BibTex RIS Cite

Endoskopi Sistemlerinin LED Sürücüsü için 8 MHz Yüksek Verimli Rezonans SEPIC Dönüştürücü Tasarımı

Year 2024, Volume: 27 Issue: 2, 461 - 468, 27.03.2024
https://doi.org/10.2339/politeknik.1118158

Abstract

Bu çalışmada, endoskopi sistemlerinde kullanılmak üzere rezonanslı SEPIC dönüştürücü tabanlı bir LED sürücü tasarımı sunulmaktadır. Yumuşak anahtarlama ile çalışan rezonanslı SEPIC dönüştürücü, güç tüketimini azaltmak ve verimliliği artırmak için iyi bir alternatiftir. Dönüştürücünün tasarımında güç yoğunluğunu artırmak için çalışma frekansı 8 MHz olarak seçilmiştir. Dönüştürücünün tasarımı, tasarım prosedürünü basitleştirmek için literatürde önerilen gerilim tahrikli doğrultucu temel alınarak yapılmıştır. Son olarak, dönüştürücünün performansı, LED yüklü yüksek güç yoğunluğuna sahip bir prototip üzerinde doğrulanmıştır. Dönüştürücünün maksimum verimi %84,5 civarında ölçülürken çıkış gerilimi 2,82 V ve çıkış akımı 1,02 A civarındadır.

Supporting Institution

Pamukkale Üniversitesi

Project Number

2021FEBE013

References

  • [1] Smith T., “Endoscopy. British Medical Association Complete Family Health Encyclopedia”, Dorling Kindersley Ltd., 403-404, (1990).
  • [2] Gärtner A, Belloni P., “Optical designs to improve LED lighting efficiency of medical endoscopes”, LED Professional, https://www.led-professional.com/resources-1/articles/optical-designs-to-improve-led-lighting-efficiency-of-medical-endoscopes, (2020).
  • [3] Brüggemann, D., Blase, B., Bühs, F., Dreyer, R., Kelp, M., Lehr, H., Oginski, S. and Schlegel, S., “Endoscope with distal LED for illumination”, World Congress on Medical Physics and Biomedical Engineering, Springer Berlin Heidelberg, Beijing/China, 2107-2110, (2012).
  • [4] Hensman C., Hanna G.B., Drew T., Moseley H. and Cuschieri A., “Total radiated power, infrared output, and heat generation by cold light sources at the distal end of endoscopes and fiber optic bundle of light cables”, Surgical Endoscopy, 12(4): 335–337, (1998).
  • [5] Todd E.F.D., Ertas H. and Hamel A.J., “Disposable attachable light source unit for an endoscope”, US8029439B2 United States Patent, (2005).
  • [6] Clancy N.T., Li R., Rogers K., Driscoll P., Excel P., Yandle R. and Elson D.S., “Development and evaluation of a light-emitting diode endoscopic light source”, Advance Biomedical and Clinical Diagnostic Systems, 8214: 82140R-1- 82140R-7, (2012).
  • [7] Govind B.N. and Dhoble S.J., “The fundamentals and applications of light-emitting diodes”, Woodhead Publishing, 35-56, (2020).
  • [8] Lamar D.G., “Latest developments in LED drivers”, Electronics, 9(4): 619, 2020.
  • [9] Zhang Z., Lin J., Zhou Y. and Ren X., “Analysis and decoupling design of a 30 MHz resonant SEPIC converter”, IEEE Transactions on Power Electronics, 31(6): 4536-4548, (2016).
  • [10] Shen W., Wang F., Boroyevich, D. Tipton, C.W., “High-density nanocrystalline core transformer for high-power high-frequency resonant converter”, IEEE Transactions on Industry Applications, 44(1): 213-222, (2008).
  • [11] Li B., Li Q., Lee F.C., “High-frequency PCB winding transformer with integrated inductors for a bi-directional resonant converter”, IEEE Transactions on Power Electronics, 34(7): 6123-6135, (2019).
  • [12] Wang Y., Lucia O., Zhang Z., Gao S., Guan Y. and Xu D., “A review of high frequency power converters and related technologies”, IEEE Open Journal of the Industrial Electronics Society. 1: 247-260, (2020).
  • [13] Guan Y., Liu C., Wang Y., Wang W. and Xu D., “Analytical derivation and design of 20-Mhz dc–dc soft-switching resonant converter”, IEEE Transactions on Industrial Electronics, 68(1): 210-221, 2021.
  • [14] Cetin S. “An improved zero voltage transition PWM boost converter with an active snubber cell”, Journal of Circuit, Systems, and Computers, 25(10): 1650128-1, 1650128-23, (2016).
  • [15] Cetin S. “High efficiency design considerations for the self-driven synchronous rectified phase-shifted full-bridge converters of server power systems”, Journal of Power Electronics, 15(3): 634-643, (2015).
  • [16] Rivas J.M., Jackson D., Leitermann O., Sagneri A.D., Han Y., Perreault D.J., “Design considerations for very high frequency dc-dc converters”, 37th IEEE Power Electronics Specialists Conference, Jeju/Korea(South), 1-11, (2006).
  • [17] Lee F.C., “High-frequency quasi-resonant converter technologies”, Proceedings of the IEEE, 76: 377-390, (1988).
  • [18] Cetin S., “Power factor corrected and fully soft switched PWM boost converter”, IEEE Transactions on Industry Applications, 54(4): 3508-3517, (2018).
  • [19] Nour Y., Knott A. and Petersen L.P., “High frequency soft switching half bridge series-resonant DC-DC converter utilizing gallium nitride FETs”, 19th European Conference on Power Electronics and Applications, 1-7, (2017).
  • [20] Zulauf G., Tong Z., Plummer J.D. and Rivas-Davila J.M., “Active power device selection in high- and very-high-frequency power converters”, IEEE Transactions on Power Electronics, 34(7): 6818-6833, (2019).
  • [21] Kovacevic M., Knott A. and Andersen M.A.E., “Very high frequency interleaved self-oscillating resonant SEPIC converter”, 15th European Conference on Power Electronics and Applications, Lille/France, 1-9, (2013).
  • [22] Li M., Ouyang Z., Andersen M.A.E., “High frequency LLC resonant converter with magnetic shunt integrated planar transformer”, IEEE Applied Power Electronics Conference and Exposition, San Antonio/USA, 2678-2685, (2018).
  • [23] Fei C., Gadelrab R., Li Q., Lee F.C., “High-frequency three-phase ınterleaved LLC resonant converter with GaN devices and integrated planar magnetics”, IEEE Journal of Emerging and Selected Topics in Power Electronics, 7(2): 653-663, (2019).
  • [24] Cetin S., Yenil V., “Optimal operation region of LLC resonant converter for on-board EV battery charger applications”, IEEE 18th International Conference on Power Electronics and Motion Control Conference, Budapest/Hungry, 78-85, (2018).
  • [25] Oncu S., Nacar S., “Investigation of the effects of different operating regions of ZVS LLC resonant converter on the converter performance”, Journal of Polytechnic, Early Access, DOI: 10.2339/politeknik.1089364, (2022).
  • [26] Khatua M., Shahzad D., Pervaiz S., Afridi K.K., “A high-power-density electrolytic-free offline LED driver utilizing a merged energy buffer architecture”, IEEE Applied Power Electronics Conference and Exposition, Anaheim/USA, 768-773, (2019).
  • [27] Kim K., Youn H., Baek J., Jeong Y. and Moon G., “Analysis on synchronous rectifier control to improve regulation capability of high-frequency LLC resonant converter”, IEEE Transactions on Power Electronics, 33(8): 7252-7259, (2018).
  • [28] Jingying H., Sagneri A.D., Rivas J.M., Yehui H., Davis S.M. and Perreault D.J., “High frequency resonant SEPIC converter with wide input and output voltage ranges”, IEEE Transactions on Power Electronics, 27(1): 189-200, (2012).
  • [29] Yilmaz S., Sazak B.S. and Cetin S., “Design and implementation web-based training tool for a single switch induction cooking system using PHP”, Elektronika ir Elektrotechnika, 99: 89-92, (2010).
  • [30] Jose R., Shivanandan A. and Venugopal V., Devi K. “DC-DC SEPIC converter topologies”, International Journal of Research in Engineering and Technology, 4: 20-23, (2015).
  • [31] Madsen M.P., Knott A. and Andersen M.A.E. “Very high frequency resonant DC/DC converters for LED lighting”, Twenty-Eighth Annual IEEE Applied Power Electronics Conference and Exposition, Long Beach/USA, 835-839, (2013).
  • [32] Vadivoo R.S., Maheswari L., Vijayalakshmi S. and Vairamani K., “Design and modeling of ZVS resonant SEPIC converter for high frequency applications”, International Conference on Circuits, Power and Computing Technologies, Nagercoil/India, 873-880, (2014).
  • [33] Kovacevic M., Knott A. and Andersen M.A.E. “A VHF interleaved self-oscillating resonant SEPIC converter with phase-shift burst-mode control”, IEEE Applied Power Electronics Conference and Exposition, Fort Worth/USA, 1402-1408, (2014).
  • [34] Kovacevic M., Knott A. and Andersen M.A.E. “VHF series-input parallel-output interleaved self-oscillating resonant SEPIC converter”, Denver/USA, IEEE Energy Conversion Congress and Exposition, Denver/USA, 2052-2056, (2013).
  • [35] Duman, T. and Boztepe, M., "Evaluation of zero voltage switching SEPIC converter for module integrated distributed maximum power point tracking applications", 10th International Conference on Electrical and Electronics Engineering (ELECO), Bursa/Turkey, 1480-1484, (2017).
  • [36] Saravanan, S., UshaRani, P., “Modeling and Control of Solar PV System with Closed Loop ZVS Resonant SEPIC Converter”, International Journal of Innovative Technology and Exploring Engineering (IJITEE), 9: 152-156, (2019).
  • [37] Erickson R.W. and Maksimovic D., “Fundamentals of Power Electronics”, Springer, Boston, MA, (2001).
  • [38] Tabisz W. and Lee F., “Zero-voltage-switching multiresonant technique: A novel approach to improve performance of high-frequency quasi-resonant converters”, IEEE Transactions on Power Electronics, 4(4), 450–458, (1989).

8 MHz High Efficient Resonant SEPIC Converter Design for LED Driver of Endoscopy Systems

Year 2024, Volume: 27 Issue: 2, 461 - 468, 27.03.2024
https://doi.org/10.2339/politeknik.1118158

Abstract

In this work, a light emitting diode (LED) driver design based on resonant SEPIC converter is presented for using in Endoscopy Systems. The resonant SEPIC converter operating with soft switching is good candidate to reduce the power consumption and increase the efficiency. In the design of the converter, the operation frequency is selected as 8 MHz in order to increase power density as well. The design of the converter is built based on voltage driven rectifier proposed in the literature to simplify the design procedure. Finally, the performance of the converter is verified on a prototype loaded with a LED, which has high power density. The maximum efficiency of the converter is measured around 84.5% while the output voltage is 2.82 V and the output current is around 1.02 A.

Project Number

2021FEBE013

References

  • [1] Smith T., “Endoscopy. British Medical Association Complete Family Health Encyclopedia”, Dorling Kindersley Ltd., 403-404, (1990).
  • [2] Gärtner A, Belloni P., “Optical designs to improve LED lighting efficiency of medical endoscopes”, LED Professional, https://www.led-professional.com/resources-1/articles/optical-designs-to-improve-led-lighting-efficiency-of-medical-endoscopes, (2020).
  • [3] Brüggemann, D., Blase, B., Bühs, F., Dreyer, R., Kelp, M., Lehr, H., Oginski, S. and Schlegel, S., “Endoscope with distal LED for illumination”, World Congress on Medical Physics and Biomedical Engineering, Springer Berlin Heidelberg, Beijing/China, 2107-2110, (2012).
  • [4] Hensman C., Hanna G.B., Drew T., Moseley H. and Cuschieri A., “Total radiated power, infrared output, and heat generation by cold light sources at the distal end of endoscopes and fiber optic bundle of light cables”, Surgical Endoscopy, 12(4): 335–337, (1998).
  • [5] Todd E.F.D., Ertas H. and Hamel A.J., “Disposable attachable light source unit for an endoscope”, US8029439B2 United States Patent, (2005).
  • [6] Clancy N.T., Li R., Rogers K., Driscoll P., Excel P., Yandle R. and Elson D.S., “Development and evaluation of a light-emitting diode endoscopic light source”, Advance Biomedical and Clinical Diagnostic Systems, 8214: 82140R-1- 82140R-7, (2012).
  • [7] Govind B.N. and Dhoble S.J., “The fundamentals and applications of light-emitting diodes”, Woodhead Publishing, 35-56, (2020).
  • [8] Lamar D.G., “Latest developments in LED drivers”, Electronics, 9(4): 619, 2020.
  • [9] Zhang Z., Lin J., Zhou Y. and Ren X., “Analysis and decoupling design of a 30 MHz resonant SEPIC converter”, IEEE Transactions on Power Electronics, 31(6): 4536-4548, (2016).
  • [10] Shen W., Wang F., Boroyevich, D. Tipton, C.W., “High-density nanocrystalline core transformer for high-power high-frequency resonant converter”, IEEE Transactions on Industry Applications, 44(1): 213-222, (2008).
  • [11] Li B., Li Q., Lee F.C., “High-frequency PCB winding transformer with integrated inductors for a bi-directional resonant converter”, IEEE Transactions on Power Electronics, 34(7): 6123-6135, (2019).
  • [12] Wang Y., Lucia O., Zhang Z., Gao S., Guan Y. and Xu D., “A review of high frequency power converters and related technologies”, IEEE Open Journal of the Industrial Electronics Society. 1: 247-260, (2020).
  • [13] Guan Y., Liu C., Wang Y., Wang W. and Xu D., “Analytical derivation and design of 20-Mhz dc–dc soft-switching resonant converter”, IEEE Transactions on Industrial Electronics, 68(1): 210-221, 2021.
  • [14] Cetin S. “An improved zero voltage transition PWM boost converter with an active snubber cell”, Journal of Circuit, Systems, and Computers, 25(10): 1650128-1, 1650128-23, (2016).
  • [15] Cetin S. “High efficiency design considerations for the self-driven synchronous rectified phase-shifted full-bridge converters of server power systems”, Journal of Power Electronics, 15(3): 634-643, (2015).
  • [16] Rivas J.M., Jackson D., Leitermann O., Sagneri A.D., Han Y., Perreault D.J., “Design considerations for very high frequency dc-dc converters”, 37th IEEE Power Electronics Specialists Conference, Jeju/Korea(South), 1-11, (2006).
  • [17] Lee F.C., “High-frequency quasi-resonant converter technologies”, Proceedings of the IEEE, 76: 377-390, (1988).
  • [18] Cetin S., “Power factor corrected and fully soft switched PWM boost converter”, IEEE Transactions on Industry Applications, 54(4): 3508-3517, (2018).
  • [19] Nour Y., Knott A. and Petersen L.P., “High frequency soft switching half bridge series-resonant DC-DC converter utilizing gallium nitride FETs”, 19th European Conference on Power Electronics and Applications, 1-7, (2017).
  • [20] Zulauf G., Tong Z., Plummer J.D. and Rivas-Davila J.M., “Active power device selection in high- and very-high-frequency power converters”, IEEE Transactions on Power Electronics, 34(7): 6818-6833, (2019).
  • [21] Kovacevic M., Knott A. and Andersen M.A.E., “Very high frequency interleaved self-oscillating resonant SEPIC converter”, 15th European Conference on Power Electronics and Applications, Lille/France, 1-9, (2013).
  • [22] Li M., Ouyang Z., Andersen M.A.E., “High frequency LLC resonant converter with magnetic shunt integrated planar transformer”, IEEE Applied Power Electronics Conference and Exposition, San Antonio/USA, 2678-2685, (2018).
  • [23] Fei C., Gadelrab R., Li Q., Lee F.C., “High-frequency three-phase ınterleaved LLC resonant converter with GaN devices and integrated planar magnetics”, IEEE Journal of Emerging and Selected Topics in Power Electronics, 7(2): 653-663, (2019).
  • [24] Cetin S., Yenil V., “Optimal operation region of LLC resonant converter for on-board EV battery charger applications”, IEEE 18th International Conference on Power Electronics and Motion Control Conference, Budapest/Hungry, 78-85, (2018).
  • [25] Oncu S., Nacar S., “Investigation of the effects of different operating regions of ZVS LLC resonant converter on the converter performance”, Journal of Polytechnic, Early Access, DOI: 10.2339/politeknik.1089364, (2022).
  • [26] Khatua M., Shahzad D., Pervaiz S., Afridi K.K., “A high-power-density electrolytic-free offline LED driver utilizing a merged energy buffer architecture”, IEEE Applied Power Electronics Conference and Exposition, Anaheim/USA, 768-773, (2019).
  • [27] Kim K., Youn H., Baek J., Jeong Y. and Moon G., “Analysis on synchronous rectifier control to improve regulation capability of high-frequency LLC resonant converter”, IEEE Transactions on Power Electronics, 33(8): 7252-7259, (2018).
  • [28] Jingying H., Sagneri A.D., Rivas J.M., Yehui H., Davis S.M. and Perreault D.J., “High frequency resonant SEPIC converter with wide input and output voltage ranges”, IEEE Transactions on Power Electronics, 27(1): 189-200, (2012).
  • [29] Yilmaz S., Sazak B.S. and Cetin S., “Design and implementation web-based training tool for a single switch induction cooking system using PHP”, Elektronika ir Elektrotechnika, 99: 89-92, (2010).
  • [30] Jose R., Shivanandan A. and Venugopal V., Devi K. “DC-DC SEPIC converter topologies”, International Journal of Research in Engineering and Technology, 4: 20-23, (2015).
  • [31] Madsen M.P., Knott A. and Andersen M.A.E. “Very high frequency resonant DC/DC converters for LED lighting”, Twenty-Eighth Annual IEEE Applied Power Electronics Conference and Exposition, Long Beach/USA, 835-839, (2013).
  • [32] Vadivoo R.S., Maheswari L., Vijayalakshmi S. and Vairamani K., “Design and modeling of ZVS resonant SEPIC converter for high frequency applications”, International Conference on Circuits, Power and Computing Technologies, Nagercoil/India, 873-880, (2014).
  • [33] Kovacevic M., Knott A. and Andersen M.A.E. “A VHF interleaved self-oscillating resonant SEPIC converter with phase-shift burst-mode control”, IEEE Applied Power Electronics Conference and Exposition, Fort Worth/USA, 1402-1408, (2014).
  • [34] Kovacevic M., Knott A. and Andersen M.A.E. “VHF series-input parallel-output interleaved self-oscillating resonant SEPIC converter”, Denver/USA, IEEE Energy Conversion Congress and Exposition, Denver/USA, 2052-2056, (2013).
  • [35] Duman, T. and Boztepe, M., "Evaluation of zero voltage switching SEPIC converter for module integrated distributed maximum power point tracking applications", 10th International Conference on Electrical and Electronics Engineering (ELECO), Bursa/Turkey, 1480-1484, (2017).
  • [36] Saravanan, S., UshaRani, P., “Modeling and Control of Solar PV System with Closed Loop ZVS Resonant SEPIC Converter”, International Journal of Innovative Technology and Exploring Engineering (IJITEE), 9: 152-156, (2019).
  • [37] Erickson R.W. and Maksimovic D., “Fundamentals of Power Electronics”, Springer, Boston, MA, (2001).
  • [38] Tabisz W. and Lee F., “Zero-voltage-switching multiresonant technique: A novel approach to improve performance of high-frequency quasi-resonant converters”, IEEE Transactions on Power Electronics, 4(4), 450–458, (1989).
There are 38 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

İrem Çorak This is me 0000-0002-2920-124X

Sevilay Çetin 0000-0002-9747-4821

Project Number 2021FEBE013
Publication Date March 27, 2024
Submission Date May 18, 2022
Published in Issue Year 2024 Volume: 27 Issue: 2

Cite

APA Çorak, İ., & Çetin, S. (2024). 8 MHz High Efficient Resonant SEPIC Converter Design for LED Driver of Endoscopy Systems. Politeknik Dergisi, 27(2), 461-468. https://doi.org/10.2339/politeknik.1118158
AMA Çorak İ, Çetin S. 8 MHz High Efficient Resonant SEPIC Converter Design for LED Driver of Endoscopy Systems. Politeknik Dergisi. March 2024;27(2):461-468. doi:10.2339/politeknik.1118158
Chicago Çorak, İrem, and Sevilay Çetin. “8 MHz High Efficient Resonant SEPIC Converter Design for LED Driver of Endoscopy Systems”. Politeknik Dergisi 27, no. 2 (March 2024): 461-68. https://doi.org/10.2339/politeknik.1118158.
EndNote Çorak İ, Çetin S (March 1, 2024) 8 MHz High Efficient Resonant SEPIC Converter Design for LED Driver of Endoscopy Systems. Politeknik Dergisi 27 2 461–468.
IEEE İ. Çorak and S. Çetin, “8 MHz High Efficient Resonant SEPIC Converter Design for LED Driver of Endoscopy Systems”, Politeknik Dergisi, vol. 27, no. 2, pp. 461–468, 2024, doi: 10.2339/politeknik.1118158.
ISNAD Çorak, İrem - Çetin, Sevilay. “8 MHz High Efficient Resonant SEPIC Converter Design for LED Driver of Endoscopy Systems”. Politeknik Dergisi 27/2 (March 2024), 461-468. https://doi.org/10.2339/politeknik.1118158.
JAMA Çorak İ, Çetin S. 8 MHz High Efficient Resonant SEPIC Converter Design for LED Driver of Endoscopy Systems. Politeknik Dergisi. 2024;27:461–468.
MLA Çorak, İrem and Sevilay Çetin. “8 MHz High Efficient Resonant SEPIC Converter Design for LED Driver of Endoscopy Systems”. Politeknik Dergisi, vol. 27, no. 2, 2024, pp. 461-8, doi:10.2339/politeknik.1118158.
Vancouver Çorak İ, Çetin S. 8 MHz High Efficient Resonant SEPIC Converter Design for LED Driver of Endoscopy Systems. Politeknik Dergisi. 2024;27(2):461-8.