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Leaf area index is an important variable in ecological and physiological studies. This study 
was aimed to determine the most suitable model explaining the leaf area estimation and 

weekly growth of leaf parameters in Red Chief apple variety. In the first part of the study, the 

leaf area was modeled through two different models (Model-1 and Model-2) developed based 
on ANN and power function (LA= AxB). In the second part, the weekly growth of each of the 

leaf width, length and area parameters were analyzed according to the Gompertz and Logistics 

function. The results of analysis revealed that leaf area estimations performed by ANN 
(Training: R2= 0.98, RMSE= 0.922, MAD= 0.614, MAPE= 4.22; Testing: R2= 0.94, 

RMSE= 3.346 MAD= 1.889 MAPE= 4.88) were more successful than Model-1 and Model-2. 
In addition, Gompertz has come to the fore as the model that best describes the weekly growth 

in all leaf parameters (Width: R2= 0.98, RMSE= 0.154, MAD= 0.134, MAPE= 3.65, Length: 

R2= 0.98, RMSE= 0.180, MAD= 0.145, MAPE= 2.26 and Leaf area: R2= 0.99, RMSE= 0.73, 
MAD= 0.654, MAPE= 4.60).  
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Yaprak alan indeksi ekolojik ve fizyolojik çalışmalarda önemli bir değişkendir. Çalışmada, 
Red Chief elma çeşidinde yaprak alan tahmini ve yaprak parametrelerinin haftalık büyümesini 

açıklayan en uygun modelin belirlenmesi amaçlanmıştır. Bu amaçla çalışmanın ilk kısmında 

ANN ve power fonksiyonuna (LA= AxB) dayalı geliştirilen iki farklı model (Model-1 ve 
Model-2) aracılığıyla yaprak alanı modellenmekte, ikinci kısmında yaprak en, boy ve alan 

parametrelerinin her birinin haftalık büyümeleri Gompertz ve Lojistik fonksiyona göre analiz 

edilmektedir. Analiz sonuçlarına göre yaprak alan tahmininde ANN’nin (Eğitim: R2= 0.98, 
RMSE= 0.922, MAD= 0.614, MAPE= 4.22; Test: R2= 0.94, RMSE= 3.346, MAD= 1.889, 

MAPE= 4.88) Model-1 ve Model-2’den daha başarılı tahminlerde bulunduğu gözlemlenmiştir. 

Bunun yanında yaprak parametrelerinin tamamında haftalık büyümeyi en iyi açıklayan 
modelin Gompertz olduğu (En: R2= 0.98, RMSE= 0.154, MAD= 0.134, MAPE= 3.65, Boy: 

R2= 0.98, RMSE= 0.180, MAD= 0.145, MAPE= 2.26 ve Yaprak alanı: R2= 0.99, 

RMSE= 0.73, MAD= 0.654, MAPE= 4.60) görülmüştür. 
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1. Introduction 
 

In terrestrial ecosystems, leaf area index (LAI) is directly 

related to plant growth, photosynthesis rate, evapotranspiration 

and yield (Pandey and Singh 2011). Leaf area estimation is 

valuable for studies such as; plant nutrition, plant competition, 

plant-soil-water relations, plant protection measures, respiration, 

light reflection and heat transfer in plants (Mohsenin 1986). 

Therefore, rapid, handy, economical and precise estimation of 

leaf area is  very  important for botanists. Measuring the surface 

 
 

area of a large number of leaves can be both time-consuming 

and require intensive labor.  

Several methods have been developed to facilitate the leaf 

area measurement (Rouphael et al. 2010). Leaf area 

measurement methods can be categorized as: destructive and 

non-destructive methods (De Swart et al. 2004). Destructive 

methods require excision of the leaf  from the  plant and include 
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drawing, blueprinting, photographing, image analysis and 

measuring by a conventional planimeter or an electronic leaf 

area meter. The destructive methods are time-consuming and 

require expensive equipment. Therefore, a simple, quick and 

reliable non-destructive method is needed to estimate the leaf 

area (Keramatlou et al. 2015). The leaf area is not directly 

measured in non-destructive methods. Instead, mathematical 

models are developed to correctly estimate the leaf area, using 

easily measured leaf parameters such as leaf length, leaf width 

and leaf stalk length (Schwarz and Kläring 2001). Regression 

analysis has been commonly used to determine the relationship 

between leaf area, leaf length and leaf width and/or leaf length x 

width (Palmer 1987; Sérgio et al. 2004; Sala et al. 2015). 

However, the use of artificial intelligence based estimation 

methods such as artificial neural network (ANN), which does 

not require strict assumptions on the data, can provide 

successful results in leaf area estimation (Shabani et al. 2017). 

The ANN becomes a common method in modeling complex 

input-output dependencies (Maren et al. 1990). Several authors 

indicated that the ANN gives reliable results in comparison with 

conventional methods (Moosavi and Sepaskhah 2012; Yuan et 

al. 2017). 

This study was carried out to determine the estimation of 

leaf area by ANN and some mathematical models (Gompertz 

and Logistics) using the width and length measurement values 

of leaf samples, and the weekly growth rate of Red Chief apple 

variety. 

 

2. Materials and Methods 
 

The leaves of Red Chief apple cultivar which were grafted 

on MM 106 semi-dwarf apple rootstock were used as plant 

material in the study. Leaf samples were taken in the vegetation 

period and transferred to the laboratory in ice packs. The length 

and width measurements were carried out from the longest and 

widest parts of the leaves (Montero et al. 2000; Demirsoy and 

Demirsoy 2003; Serdar and Demirsoy 2006; Celik et al. 2011). 

The leaf area was calculated using Placom Intelligent 

Planimeter with 3 replications. 

The data for leaves of the Red Chief apple cultivar were 

analyzed in two different axes. The estimation of leaf area by 

ANN and some mathematical models was the first axis, and the 

second one is the determination of the most suitable model that 

explains the leaf width, length and area growth. The ANN and 

power function (LA= AxB) were used to estimate the leaf area, 

and Gompertz and Logistics function were used to model the 

weekly growth of the leaves. 
 

2.1. Artificial Neural Network (ANN) 
 

The ANN method was developed inspiring from the 

working and learning ability of the brain (Öztemel 2016), and 

was based on the operating principle of a biological nerve cell 

which has 3 layers; input, hidden and output layers (Dawson 

and Wilby 1998). The number of neurons in the input and 

output layers may differ depending on the number of variables 

(dependent and independent variables) defining the inputs and 

outputs of the problem being investigated, while the trial and 

error method is common in determining the number of neurons 

to be included in the interlayer (Yavuz and Deveci 2012; 

Özşahin and Singer 2019a). Different learning types can be 

preferred in the ANN to learn the relationship between the 

outputs corresponding to the inputs. The learning types in ANN 

are defined as supervised, unsupervised, mixed and reinforced 

(Akıllı and Atıl 2014). In the training process of the network, 

minimizing the difference between the actual values and the 

results produced by the network is aimed; thus, the updates of 

link weights iteratively continues until reaching the error level 

determined in this process (Takma et al. 2012). The model 

performance is evaluated with the test dataset when the learning 

process is completed (Özşahin and Singer 2019b). 

In this context, the general representation of the process 

steps followed in the ANN approach for the leaf area estimation 

using the leaf width and length measurement values was 

schematically presented in Figure 1. 

 

 

Figure 1. Flowchart in estimation of leaf area in the ANN model. 
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In the ANN model studied, the leaf width and length 

measurement values have been presented as input data under 

appropriate network topology in Step 1, while leaf area 

measurements have been presented to the network as 2 inputs 

and 1 outputs (Figure 1). The number of intermediate layers and 

the number of neurons in this layer were determined by trial and 

error method as 1:6 as a single layer with 6 neurons. In Step 2, 

the data set is divided into two parts as training and testing. All 

the data were subjected to normalization process in the range of 

[-1 1]. The use of hyperbolic tangent in the intermediate layer 

and the linear transfer function in the output layer were 

preferred. Finally, Scaled Conjugate Gradient (SCG) back-

propagation algorithms was used for the network training. In 

Step 3, the performance of the model was evaluated by some 

statistical criteria stated in equations 1-4 (Akkol et al. 2017).  

The ANN model used in estimation of leaf area was 

examined in comparison with two different mathematical 

models based on power equation as Model-1 and Model-2. The 

equations for the Model-1 and Model-2 were given in Table 1.  

 
Table 1. Equations for the leaf area estimation models used in the study. 

Models Nonlinear function  Linear form 

Model- 1 YLA=A(W)B ln (YLA)= ln (A)+B ln(W) 

Model- 2 YLA=A(L)B ln(YLA) = ln(A) + B ln(L) 

A and B refer to model coefficients. 

 

2.2. Analysis of leaf parameters with nonlinear models  
 

Temporal (weekly) growths of the width, length and area 

parameters of a leaf were modeled as the secondary goal of the 

study. Data were analyzed with two different growth functions, 

Gompertz and Logistics. Equational expressions regarding the 

models used were shown in Table 2 (Kıymaz et al. 2018a; 

Kıymaz et al. 2018b).  

Some goodness of fit criteria used in comparing the model 

performances were given in equations 1-4, respectively (Akkol 

et al. 2017). The evaluations revealed that RMSE, MAPE and 

MAD values of the model were low and R2 value was high. 

 
Table 2. Models and related equations. 

Models Model expression 

Gompertz Yt=b0exp(-b1exp (-b2t)) 

Logistic Yt=b0 (1+ b1 exp(-b2t))
-1 

b0: asymptotic value, b1: growth values of apple leaves in the vegetation period, b2: 

growth rate, t: time (week). 

 

 

R2 =
∑ (Ŷi-Ȳ)

2n
i=1

∑ (Yi-Ȳ)
2n

i=1

    (1) 

 

RMSE = √
∑ (Ŷi−Ȳ)

2n
i=1

n
   (2) 

 

MAD =
∑ |Yi−Ŷi|
n
i=1

n
    (3) 

 

MAPE =
∑ |

Yi−Ŷi
Yi

|n
i=1

n
× 100   (4) 

 

In equations, n is the number of sample data (number of 

leaves taken for measurement), Yi is the measured values, Ŷi is 

the prediction value, i is the estimation value and Ȳi is the mean 

value. MATLAB R2013.a and Microsoft Office Excel software 

were used in ANN modeling. 

 

3. Results 
 

Descriptive statistics on width, length and leaf area were 

given in Table 3. The mean values of leaf length, width and area 

were 4.37 cm, 7.40 cm and 23.90 cm2, respectively. 

 
Table 3. Descriptive statistics of width, length and area of leaf samples. 

Data 

sets 

Measurement Min Max Mean SEM N 

Inputs L 1.50 8.20 4.37 0.12 125 

W 2.00 12.00 7.40 0.18 125 

Output LA 2.75 65.25 23.90 1.09 125 
L: Leaf length (cm), W: Leaf width (cm), LA: Leaf area (cm2), SEM: Standard 

Error of Mean. 

 

The findings of the study were given in two parts. In the 

first part, the results of regression analysis based on ANN and 

Power equation, and the most appropriate model selection 

explaining the weekly growth of leaf parameters (width, length 

and area) is given in the second part. 
 

3.1. Analysis of results obtained by ANN and mathematical 

models 
 

In ANN, where width and length measurement values of 

leaves were considered as input to the network and leaf area as 

output, 60% of the data (n= 75) was allocated to test the 

network, and the remaining 40% (n= 50) was used as test data 

to evaluate the performance of the network used. These datasets 

were also analyzed for two different models based on power 

equation, and R2, MAD, RMSE and MAPE values obtained 

were given in Table 4. 

The ANN, considering the R2 value, MAD, RMSE and 

MAPE criteria, yielded better results than Models 1 and 2 which 

were developed using only the width and length parameters 

(Table 4). 
 

Table 4. The results of regression analysis based on ANN and Power equation. 

Performance Criteria 
Model -1 Model -2 ANN 

Training Testing Training Testing Training Testing 

R2 0.912 0.833 0.88 0.696 0.982 0.940 

MAD 1.941 3.061 2.146 4.113 0.614 1.889 

RMSE 2.535 3.695 2.746 5.025 0.922 3.346 

MAPE 12.69 9.004 14.78 12.19 4.221 4.877 

Training and test models  

Model-1: Training YLA= 1.53W1.8049 ; Testing: YLA= 2.952 W1.443  

Model-2: Training YLA= 0.4653L1.8964; Testing: YLA= 0.7061 L 1.765  
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3.2. Findings on weekly growth of leaf width, length and area 

parameters 
 

The most suitable model explaining the growth of leaf 

width, length and area were determined in the second part of the 

study by using mean weekly measurements. Two different 

models, Gompertz and Logistics, were used for this purpose. 

The parameter values of the aforementioned models were given 

in Table 5.  

The values of some goodness of fit criteria calculated for 

the models were given in Table 6. The best model (width, 

length, area) which had the highest R2 and the lowest RMSE, 

MAD and MAPE values for all three parameters was Gompertz 

model (Table 6). The fit graphs between weekly measurement 

values and measurement values for leaf width, length and area 

were shown in Figure 2, respectively. 

The R2 values in the Gompertz model for all the leaf width, 

height and area parameters approached 1.0 more than those in 

the Logistics model and explained the real measurement values 

at a high rate (Figure 2). 

 

4. Discussion and Conclusions 
 

The leaf area is an important parameter for physiological 

and agronomic studies. Therefore, reliable data on leaf area is 

crucial in determining the physiological characteristics of apple, 

which is one of the most produced and consumed fruits in 

Turkey and rest of the world. Several mathematical estimation 

models have been developed for various plants, using leaf 

length and width parameters obtained using non-destructive 

methods. Various combinations of leaf width and length 

parameters were used in estimation of leaf area for different 

plants, and regression analysis was frequently preferred to 

investigate the relationship between the parameters (Williams 

III and Martinson 2003; De Swart et al. 2004; Sérgio et al. 

2004; Cho et al. 2007; Peksen 2007; Rivera et al. 2007; Kumar 

2009). In addition, studies employing the ANN method and 

regression analysis together (Vazquez-Cruz et al. 2013; 

Küçükönder et al. 2016; Yuan et al. 2017), showed that ANN 

method provided better results and could be an alternative to 

regression analysis. Ozturk et al. (2019) stated that ANN 

models were more accurate in terms of both the training and 

testing phases compared to the multiple linear regression 

models.  

Kıymaz et al. (2018a) who carried out a study using 

nonlinear methods such as artificial neural networks, Logistic, 

Richards and Gompertz models in estimating the leaf area of 

sugar beet, reported that all models exhibited high identification 

success. In another study carried out to estimate bean leaf area 

using Gompertz, Weibull, Logistics and Monomolecular 

models, Kıymaz et al. (2018b) reported that the Gomperzt 

model was the most successful model, followed by the 

monomolecular model.  

The results of this study revealed that ANN provides more 

successful estimations than Model-1 and Model-2, which are 

based on only leaf width and length parameters. In addition, 

Gompertz model has given the best estimation result for the 

weekly leaf growth. In this context, mathematical methods such 

as ANN and Gompertz, which have been used to estimate the 

leaf area of different plants, can be considered successful and 

effective estimation tool to estimate the measurement values of 

the Red Chief apple cultivar. 

The results concluded that the use of mathematical 

modeling tools will contribute to the researchers as an 

alternative method to reduce labor, economic cost and save time 

by accurately determining the leaf area and weekly leaf growth 

values. 

 
Table 5. The values of model parameters. 

Measurements Model  b0 b1 b2 

Width 
Gompertz 6.623 1.252 0.222 

Logistic 6.301 2.105 0.312 

Length 
Gompertz 9.883 1.134 0.295 

Logistic 9.628 1.809 0.387 

Leaf Area 
Gompertz 49.630 2.373 0.223 

Logistic 43.195 6.392 0.389 

 

Table 6. Comparison of performances for nonlinear mathematical models. 

Measurements Models 
Performance Criteria 

R2 RMSE MAD MAPE 

Width 
Gompertz 0.98 0.154 0.134 3.656 

Logistic 0.97 0.165 0.143 4.011 

Length 
Gompertz 0.98 0.180 0.145 2.263 

Logistic 0.98 0.197 0.160 2.524 

Leaf Area 
Gompertz 0.99 0.73 0.654 4.602 

Logistic 0.99 0.87 0.712 5.776 
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Figure 2. The values of measured and estimated by models. 
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