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ABSTRACT 

In spite of the abundance of articles on mathematical programming models to the two-group classification 
problem, very few have addressed the multi-group classification problem using mathematical programming. 
This study presents a new multi-group data classification method based on mathematical programming. A new 
multi-group data classification model is proposed in this study that includes the strong properties of the 
mathematical programming models previously suggested for multi-group classification problems in the 
literature. The efficiency of proposed approach is tested on the well-known IRIS data set. The results on the 
IRIS data set show that our proposed method is usability and efficient on multi-group classification problems. 
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1. INTRODUCTION

Discriminant analysis (DA) is a decision support tool 
with a wide range of applications, such as health 
applications, bankruptcy prediction, education planning, 
taxonomy problems, including engineering applications. 
DA is a multivariate statistical classification technique 
for separating distinct sets of objectives and allocating a 
new objective to a previously defined group. This 
technique uses the values of a set of variables associated 
with each unit to classify unit of unknown group 
membership. Discriminant methods then determine a 
function that classifies group membership based on the 
observed attributes. The resulting function is used to 
predict group membership of new units.  

Over the last three decades, much interest has been 
generated in mathematical programming approaches to 
the statistical classification problem. The papers by Freed 
and Glover [1, 2] have triggered a series of papers 
examining both promising formulations and theoretical 
shortcomings of proposed methods. Since both the 
standard linear discriminant procedure [3] and the 
quadratic discriminant function procedure [4] are based 
on the assumption of multivariate normality for optimal 
performance, a number of researchers have examined 
mathematical programming formulations in situations in 
which the standard assumptions are violated. Most of 
these researches have focused on the two-group problem 
with papers proposing new mathematical programming 
models or evaluating the classificatory performance of 



78 GU J Sci., 24(1):55-62 (2011)/ H.Hasan ÖRKCÜ1♠, Hasan BAL1 
 

 

proposed models against that of the standard parametric 
classification procedures. 

Artificial neural networks (ANN), like mathematical 
programming methods, have also a wide ranging usage 
area in the classification problems. There are many 
studies related to the mathematical programming and 
artificial neural network approaches for the solutions of 
the two-group classification problems [5–16].  

This paper presents a usability and efficient new multi-
group mathematical programming approach for multi-
group classification problems. In section 2, multi-group 
mathematical programming methods proposed in the 
literature are examined and proposed multi-group 
mathematical programming model is presented in section 
3. The concepts of artificial neural networks, multi-layer 
network structure and back-propagation algorithm are 
handled in section 4. The results for IRIS data set is given 
in section 5. Lastly, the paper is concluded by presenting 
the conclusions and discussion of results.  

2.MATHEMATICAL PROGRAMMING 
APPROACHES FOR MULTI-GROUP 
CLASSIFICATION 

The multi-group problem has received relatively limited 
research interests in terms of mathematical programming 
approaches. Only a few papers have considered 
extensions into the three or more group case. A simple 
extension of two-group formulation to a multiple-group 
formulation is to use a pairwise analysis on all two-group 
combinations. Freed and Glover [2] proposed the 
decomposition of the h  group problem into 

( )1
2 2
h h h −⎛ ⎞

=⎜ ⎟
⎝ ⎠

 two-group problems and the 

classification of the observations by pairwise application 
of any mathematical programming model for the two-
group problem. It should be noted that this method may 
not yield the minimum number of misclassifications in 
the training sample. This is because the method may 
classify an observation into h  different groups by the h  
pairwise discriminate functions, as pointed out by Pavur 
and Loucopoulos [17], Loucopoulos and Pavur [18]. For 
the multi-group classification problems, a more direct 
way is to use general multiple function classification 
model presented by Gehrlein [19].  

Gehrlein [19] proposed a general multiple function 
classification (GMFC) model. The notations and the 
formulation for GMFC are given below. 

1, if unit  is misclassified
0, if unit  is properly classifiedj

j
y

j
⎧

= ⎨
⎩

   , 

ijZ : observation value for variable i  of unit j , 

h : the number of groups, 

M : a large positive constant, 

k : the number of variables, 

n : the total number of units. 

riα : the weight assigned to variable ijZ  for unit j  in 

group rG   

0rα : the shifting constant for group rG  (a threshold 

value for group rG ) 

The variables 
jy  ( 1, . . . , j n= ) are binary and the 

criterion weight riα  is sign-unrestricted 

( 1,  2, . . . , r h= , 1,  2, . . . , i k= ).   

1

 
n

j
j

Min y
=
∑  

Subject to:             (1) 

0 0
1 1

k k

r ri ij t ti ij j
i i

Z Z My eα α α α
= =

+ − − + ≥∑ ∑ , 

rj G∀ ∈ , 1,  2, . . . , j n=              

1,  2, . . . , r h= , r t≠  

The GMFC model classifies a unit into the group with the 
largest discriminant score. Note that in constraints of this 
model a separate discriminant function is constructed for 
each group.  

Gochet et al. [20] derive a linear programming 
formulation allowing for nonparallel separating 
hyperplanes between the groups, an outcome not possible 
by any other formulation presented previously. The 

formulation for Gochet et al. [20] model (GCH- qLP ) is 
given below: 
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,  0j j
rt rtβ γ ≥ ,  rj P∀ ∈ , rt S∈ ∼ , r S∈  

,r tα α  are unrestricted in sing variables. In this model, 

variable j
rtβ  denotes the badness of fit and j

rtγ  the 

goodness of fit of units rj P∈  with respect to 

group rj G∈ ∼ . The small number of ε  is included in 
order to resolve the ambiguity arising from border line 
cases. The decision rule associated with the model is to 
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classify a unit j  to group h , provided that 

{ }z max / ,  1,  . . . , h r
r j rr S

z j G r hα α
∈

= ∈ = . 

The measure of total goodness and badness are 
conceptually similar to internal and external deviations 
previously introduced by several researchers for the two-
group case [21]. 

Sueyoshi [9] developed a linear programming model to 
solve the multi-group classification problem. The 
multiple-group model is based on mixed-integer 
programming model which is proposed previously by 
Sueyoshi [8]. Sueyoshi’s multi-group classification 
model can be formulated as follows: 
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In this model, rc  ( 1,  . . . , 1r h= − ) unrestricted in 

sign, 0 /1jy = , 0 /1iξ
+ = , 0 /1iξ

− =  and other 

variables are non-negative 
( 1,  . . . , j n= ; 1,  . . . , i k= ),  

The units in groups are classified as follows: 

If 
1

1

k

i im
i
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≥∑ , then the observation belongs to 1G . 

If 1
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belongs to rG  ( 1,  . . . , 1r h= − ). 

If 
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hG . 

This model produces 1h −  different discriminant scores 
( 1c  to 1hc − ) in order to classify h  groups. It maintains 

same weight scores 
iλ  ( 1,  . . . , i k= ). When solving 

this model, 1 2 1 . . . hc c c −> > >  is required 
optimality. If such a requirement is not satisfied on 
optimality, then additional side constraints: 1 2c c ε> + , 

2 3c c ε> + , . . . , and 2 1h hc c ε− −> +  are needed to be 
incorporated into the model.  

As noted by Sueyoshi [9], his model can solve a specific 
type of multiple classifications, where the “specific” 
implies that a whole data set can be arranged in a 
particular ordering. In other words, the particular 
ordering data implies the one that is classified into multi 
groups by several separation functions whose slopes (i.e., 
weights) are same but having different intercepts. If a 
data set does not have such a special ordering structure, 
Sueyoshi model may produce an infeasible solution or a 
low classification rate. 

3. A NEW MATHEMATICAL PROGRAMMING 
MODEL FOR MULTI-GROUPS  

The mathematical programming approaches proposed for 
multi-group classification problems in the literature have 
both advantages and disadvantages. Multi-group DEA-
DA model proposed by Sueyoshi [9] depends on the 
assumption that data set has a particular ordering 
according to the groups; and this model are also mixed 
integer classification models. Multiple function 
classification model of Gehrlein does not require such a 
particular ordering in the data structure; the absence of 
appropriate normalization constraint in the model causes 
irrational solutions such as weight coefficients to be zero. 
Moreover, the fact that the model is a mixed integer 
model brings forth additional difficulty in the solutions. 
There is no assumption that data set has a particular 
ordering in the qLP  approach proposed by Gochet et al. 
[20]  as well as the fact that all the variables are not 
negative in the model which shows that the model is not 
an integer model. This model’s disadvantage, however, is 
the non-appropriation of normalization constraint and the 
problem of the decision for q  constant. The model 
proposed by Gochet et al. [20] also produces infeasible 
solutions for some situations [21].      

DEA-DA models, proposed by Sueyoshi for two-group 
and multi-group classification problems, are 
methodologically stronger than other models since it 
allows negative variables in the data and attempts the 
classification of units by including them in a convex sets 
[9]. The strong features of DEA-DA model by Sueyoshi 
can be combined with Gochet et al.’s classification model 
in our study. A new multi-group mathematical 
programming classification model, which is a 
combination of Sueyoshi’s DEA-DA model, and Gochet 
et al.’s multi-group classification model, is given below:    
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ε  is a small number.  

A unit is assigned into the group that has its highest 
classification score with the aid of this model. The 
first constraint in the model (4), while  the units 
which belong in the thr group is to be assigned to 
its group by the aid of  

0
1

k

r ri ij
i

Zα α
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+∑  discriminant 

function, the units which belong in the tht  group is 
to be assigned  to its group by the aid of 

0
1

k

t ti ij
i

Zα α
=

+∑  discriminant function. In this model, 

sum of the riα  classification weights are restricted 
to unity. Classifying the units to appropriate groups 
is made by adding j

rtn  and j
rtp  deviation variables 

to this constraint and minimizing the undesired j
rtn  

deviation variable.  

4.MULTI-LAYER ARTIFICIAL NEURAL 
NETWORKS AND USING CLASSIFICATION 
PROBLEMS 

A neural network is an interconnected group of artificial 
neurons that uses a mathematical or computational model 
for information processing based on a connectionist 
approach [22]. Artificial neural networks are parallel 
computational models which are able to map any 
nonlinear functional relationship between an input and an 
output hyperspace to desired accuracy. They are 
constituted by individual processing units called neurons 
or nodes and differ among each other in the way these 
units are connected to process the information and, 
consequently in the kind of learning protocol adopted 
[23]. 

In particular, the neurons of a feed-forward neural 
network are organized in three layers: the input units 
receive information from the outside world, usually in the 
form of a data file; the intermediate neurons, contained in 
one or more hidden layers, allow nonlinearity in the data 
processing, the output layer is used to provide an answer 
for a given set of input values. In a fully connected 
artificial neural network, each neuron in a given layer is 
connected to each neuron in the following layer by an 
associated numerical weight ( ijw ). The weight 

connection two neurons regulate the magnitude of signal 
that passes between them. In addition, each neuron 
possesses a numerical bias term corresponding to an input 
of 1−  whose associated weight has the meaning of a 
threshold value. 

Rumelhart et al. [24] popularized the use of 
backpropagation for learning internal representation in 
neural networks. Backpropagation (BP) algorithm is the 
most widely used search technique for training neural 
networks. Information in an ANN is stored in the 
connection weights which can be thought of as the 
memory of the system. The purpose of BP training is to 
change iteratively the weights between the neurons in a 
direction that minimizes the error E , defined as the 
squared difference between the desired and the actual 
outcomes of the output nodes, summed over training 
patterns (training set data) and the output neurons. The 
algorithm uses a sample-by-sample updating rule for 
adjusting connection weights in the network. In one 
algorithm iteration, a training sample is presented to the 
network. The signal is then fed in a forward manner 
through the network until the network output is obtained. 
The error between the actual and desired network outputs 
is calculated and used to adjust the connection weights. 
Basically, the adjustment procedure, derived from a 
gradient descent method, is used to reduce the error 
magnitude. The procedure is firstly applied to the 
connection weights in the output layer, followed by the 
connection weights in the hidden layer next to output 
layer. This adjustment is continued backward through to 
network until connection weights in the first hidden layer 
are reached. The iteration is completed after all 
connection weights in the network have been adjusted.  

In this study, training of the multi-layer neural networks 
is implemented with back-propagation algorithm and 
network structure that has been trained with back-
propagation algorithm has been used in the solutions of 
the multi-group classification models. 

5. COMPARISON OF CLASSIFICATION MODELS 
USING IRIS DATA SET 

In this section, the efficiency of the proposed model is 
tested on the well-known IRIS data set. This data set was 
provided by Fisher [3] for the sampling of statistical 
discriminant analysis. There existed 3 different species of 
ornamental flowers, meaning 3 different groups; setosa, 
versicolor, and virginica. Data set comprised of 150 
flowers; having 50 in each of the three groups. 4 different 
species were observed from each flower; sepal length, 
sepal width, petal length, and petal width. This data set is 
studied in the multi-group classification problems and 
pattern recognition. 

Data is separated into two different sets in the 
discriminant analysis, like the artificial neural networks, 
for the purpose of comparing their classification 
performances. The first set is used for obtaining the 
discriminant function and is termed as training sample or 
development sample. This set, in which the discriminant 
function is obtained, is equivalent to the training set in 
artificial neural networks. The latter set is termed as 
holdout sample and these samples are not used for 
obtaining the discriminant function. The accurate 
performance of the method is tested by this holdout 



 GU J Sci., 24(1):55-62 (2011)/ H.Hasan ÖRKCÜ1♠, Hasan BAL1 81 

 

sample. The holdout sample in the discriminant analysis 
is equivalent to the test set in artificial neural networks. 

We selected 24 data samples randomly for the training 
process where each group is represented by exactly the 
same number of samples. Training sample data set is 
shown in Table 1 and test set is shown in Table 2. 
Training sample data set is used for evaluating the 
performance of Fisher’s linear discriminant function 
(FLDF), Gehrlein’s multiple function classification 
model (GMFC), Sueyoshi’s multi-group classification 

model (DEA-DA), Gochet et al.’s multi-group 

classification model (GCH- qLP ), and multi-layer 
structure networks trained with back-propagation 
algorithm.  

Network structure containing seven hidden layers were 
used when multi-layer structure was trained with back-
propagation algorithm. Maximum iteration number was 
chosen as 10000 while the learning rate was chosen as 
0.05. All of the results are obtained by using the 
programs MATLAB 7.0 and WINQSB. 

 

Table 1. IRIS data training (development) set. 

 Setosa Versicolor Virginica 

Unit 
1Z  2Z  3Z  4Z  1Z  2Z  3Z  4Z  1Z  2Z  3Z  4Z  

1 5.7 4.4 1.5 0.4 5.6 3 4.1 1.3 6.5 3 5.8 2.2 
2 4.8 3 1.4 0.1 5.5 2.3 4 1.3 6.3 2.9 5.6 1.8 
3 5.2 4.1 1.5 0.1 5.7 3 4.2 1.2 6.3 2.5 5 1.9 
4 5.5 4.2 1.4 0.2 6.7 3.1 4.7 1.5 6.7 3.1 5.6 2.4 
5 4.9 3.1 1.5 0.1 5.8 2.7 4.1 1 6 3 4.8 1.8 
6 4.8 3.4 1.6 0.2 5 2.3 3.3 1 5.8 2.7 5.1 1.9 
7 5.4 3.7 1.5 0.2 6 2.7 5.1 1.6 6.5 3.2 5.1 2 
8 5.2 3.5 1.5 0.2 5 2 3.5 1 6.8 3 5.5 2.1 

1Z : sepal length, 2Z : sepal width, 3Z : petal length, 4Z : petal width 

Explicit solutions of the models and the correct 
classification performances obtained from training and 
test sets are summarized as follows: 

●Fisher’s linear discriminant function (FLDF); 

1 1 2 3 4138.501 60.310 4.256 5.400 76.697d Z Z Z Z= − + − − −  for group 1 (Setosa) 

2 1 2 3 4119.289 50.050 15.651 13.738 50.435d Z Z Z Z= − + − + −  for group 2 (Versicolor) 

3 1 2 3 4137.028 43.947 16.070 15.776 22.142d Z Z Z Z= − + − + −  for group 3 (Virginica) 

%95.8 performance in training set and %89.6 performance in test set. 

●Gehrlein’s multiple function classification model (GMFC) has infeasible solution. 

●Gochet et al.’s multi-group classification model (GCH- qLP ); 

1 1 2 3 4120.9900 0.0304 0.0098 209.4370 142.4284d Z Z Z Z= + + − +  for group 1 (Setosa) 

2 1 2 3 4120.9700 0.0233 0.1160 209.1665 141.9951d Z Z Z Z= + − − +  for group 2 (Versicolor) 

3 1 2 3 4120.4800 0.0503 0.1040 209.2884 142.5395d Z Z Z Z= − + − +  for group 3 (Virginica) 

%95.8 performance in training set and %84.1 performance in test set. 

●Sueyoshi’s multi-group classification model (DEA-DA) 

1 0.2060λ+ = , 2 0.0100λ+ = , 3 0.0100λ+ = , 4 0λ+ = , 1 0λ− = , 2 0λ− = , 3 0λ− = , 4 0.7740λ− = , 1 1ξ + =  2 1ξ + = , 

3 1ξ + = , 4 1ξ − =  1 0.4991c = , 2 0c = , 0.001ε =  

 

1 2 3 40.2060 0.0100 0.0100 0.7740 0.4991d Z Z Z Z= + + − ≥  for group 1 (Setosa) 
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1 2 3 4

1 2 3 4

0.2060 0.0100 0.0100 0.7740 0.4991
0.2060 0.0100 0.0100 0.7740 0

d Z Z Z Z
d Z Z Z Z

ε= + + − ≤ −

= + + − ≥
 for group 1 (Versicolor) 

1 2 3 40.2060 0.0100 0.0100 0.7740 0d Z Z Z Z ε= + + − ≤ −  for group 1 (Virginica) 

%100 performance in training set and %90.47 performance in test set. 

● Multi-layer artificial neural network structure, trained 
with real-coded genetic algorithm, has 100% correctly 

classification performance in training set and 92.06% 
correctly classification performance in test set.   

●Proposed multi-group mathematical programming model; 

1 1 2 3 40.0140 0.00595 0.22640 0.020066 0.021456d Z Z Z Z= + + + +  for group 1 (Setosa) 

2 1 2 3 40.00697 0.057056 0.01876 0.17352 0.01621d Z Z Z Z= + + + +  for group 2 (Versicolor) 

3 1 2 3 40.012126 0.008932 0.001485 0.1601 0.25698d Z Z Z Z= + + + +  for group 3 (Virginica) 

%100 performance in training set and %92.06 performance in test set. 

 

Multi-layer structure networks trained with back-
propagation and our proposed mathematical 
programming model are observed to have high level of 
accurate classification performances when training and 
test data set results are analyzed. 

6. CONCLUSION AND FUTURE WORK 

In this study, a new multi-group classification method is 
developed in solving multi-group classification problems. 
Our new mathematical programming method does not 
need in a particular ordering arrangement of data as well 
as the fact that the model does not have any integer 
structure.  

According to the computational results of well-known 
IRIS data, it is seen that our new mathematical 
programming method is capable of solving multi-group 
classification problems. 

For a further study, the performance of proposed method 
may be also investigated by using the other real-world 
and simulation data for multi-group classification 
problems.  

 

 

Table 2. IRIS data test (holdout) set. 

 Setosa Versicolor Virginica 

Unit 
1Z  2Z  3Z  4Z  1Z  2Z  3Z  4Z  1Z  2Z  3Z  4Z  

1 4.5 2.3 1.3 0.3 4.9 2.4 3.3 1 6.7 3.3 5.7 2.1 
2 5 3.5 1.6 0.6 6.2 2.2 4.3 1.5 7.3 2.9 6.3 1.8 
3 4.3 3 1.1 0.1 5.5 2.6 4.4 1.2 4.9 2.5 4.5 1.7 
4 5 3.5 1.3 0.3 6 3.4 4.5 1.6 6.7 3.1 5.6 2.4 
5 5.1 3.8 1.9 0.4 5.8 2.7 3.9 1.2 5.8 2.8 5.1 2.4 
6 5 3.4 1.5 0.2 5.6 3 4.1 1.3 6.5 3 5.5 1.8 
7 5.1 3.7 1.5 0.4 5.7 2.9 4.2 1.3 7.7 3.8 6.7 2.2 
8 5.1 3.8 1.5 0.3 5.9 3 4.2 1.5 5.7 2.5 5 2 
9 4.6 3.4 1.4 0.3 6.9 3.1 4.9 1.5 6.8 3 5.5 2.1 
10 5.4 3.4 1.7 0.2 5.2 2.7 3.9 1.4 7.7 3 6.1 2.3 
11 5.8 4 1.2 0.2 7 3.2 4.7 1.4 6.9 3.2 5.7 2.3 
12 4.9 3 1.4 0.2 5.7 2.6 3.5 1 7.4 2.8 6.1 1.9 
13 5 3.2 1.2 0.2 6.6 2.9 4.6 1.3 7.2 3.2 6 1.8 
14 5 3 1.6 0.2 6 2.9 4.5 1.5 6.4 2.7 5.3 1.9 
15 5.1 3.8 1.6 0.2 6.6 3 4.4 1.4 7.9 3.8 6.4 2 
16 4.7 3.2 1.3 0.2 6.1 2.8 4 1.3 6.2 2.8 4.8 1.8 
17 5.4 3.4 1.5 0.4 6.4 3.2 4.5 1.5 6.4 3.2 5.3 2.3 
18 4.6 3.2 1.4 0.2 5.5 2.5 4 1.3 6.7 3.3 5.7 2.5 
19 4.9 3.1 1.5 0.2 5.8 2.6 4 1.2 6.4 2.8 5.6 2.1 
20 5 3.4 1.6 0.4 6.4 2.9 4.3 1.3 6.3 2.8 5.1 1.5 
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21 4.4 2.9 1.4 0.2 5.5 2.4 3.8 1.1 6.5 3 5.2 2 
22 4.6 3.6 1 0.2 5.1 2.5 3 1.1 6.8 3.2 5.9 2.3 
23 5.1 3.3 1.7 0.5 5.6 2.5 3.9 1.1 7.7 2.8 6.7 2 
24 5 3.3 1.4 0.2 6.3 3.3 4.7 1.6 6.1 3 4.9 1.8 
25 5.1 3.5 1.4 0.2 5.4 3 4.5 1.5 6.1 2.6 5.6 1.4 
26 5 3.6 1.4 0.2 6.7 3.1 4.4 1.4 7.1 3 5.9 2.1 
27 5.4 3.9 1.3 0.4 5.6 3 4.5 1.5 5.6 2.8 4.9 2 
28 5.1 3.3 1.7 0.5 5.6 2.7 4.2 1.3 6.3 3.3 6 2.5 
29 5.5 3.5 1.3 0.2 6 2.2 4 1 6.4 2.8 5.6 2.2 
30 4.8 3.4 1.9 0.2 6.7 3.1 4.7 1.5 6.3 2.7 4.9 1.8 
31 4.6 3.1 1.5 0.2 6.3 2.5 4.9 1.5 6.4 3.1 5.5 1.8 
32 5.1 3.5 1.4 0.3 5.7 2.8 4.1 1.3 7.7 2.6 6.9 2.3 
33 5.3 3.7 1.5 5.6 5.6 2.9 3.6 1.3 6.9 3.1 5.1 2.3 
34 4.8 3.1 1.6 6.5 6.5 2.8 4.6 1.5 6.7 3 5.2 2.3 
35 4.7 3.2 1.6 6.1 6.1 3 4.6 1.4 6.3 3.4 5.6 2.4 
36 4.8 3 1.4 5.7 5.7 2.8 4.5 1.3 6 2.2 5 1.5 
37 5.1 3.4 1.5 5.5 5.5 2.4 3.7 1 7.2 3.6 6.1 2.5 
38 5.7 3.8 1.7 6.1 6.1 2.8 4.7 1.2 5.8 2.7 5.1 1.9 
39 5.2 3.4 1.4 6.2 6.8 2.8 4.8 1.4 6.2 3.4 5.4 2.3 
40 4.4 3.2 1.3 6.2 6.2 2.9 4.3 1.3 7.6 3 6.6 2.1 
41 4.4 3 1.3 6.7 6.7 3 5 1.7 5.9 3 5.1 1.8 
42 5.4 3.9 1.7 6.3 6.3 2.3 4.4 1.3 6.7 3 5 1.7 

1Z : sepal length, 2Z : sepal width, 3Z : petal length, 4Z : petal width 
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