Araştırma Makalesi
BibTex RIS Kaynak Göster

Ovit Dağbaşı Gölü Suyunda Doğal Radyoaktivite Konsantrasyonlarının Belirlenmesi

Yıl 2021, Cilt: 2 Sayı: 1, 16 - 24, 29.06.2021
https://doi.org/10.53501/rteufemud.918621

Öz

Doğada yaşayan tüm canlılar sürekli olarak doğal ve yapay radyasyon kaynaklarından yayınlanan iyonlaştırıcı radyasyona maruz kalmaktadır. Bu nedenle, yaşam alanları ve ziyaret edilen bölgelerde radyoaktivite düzeylerinin belirlenmesi önemlidir. Bu çalışmada, Rize ili İkizdere ilçesine bağlı İkizdere-İspir karayolu üzerinde bulunan Ovit Dağbaşı Gölünden alınan su örneklerinde 226Ra, 232Th ve 40K radyoaktivite konsantrasyonları yüksek saflıkta germanyum dedektörü (HPGe), 3H radyoaktivite konsantrasyonları ise sıvı sintilasyon sayacı (LSC) kullanılarak belirlendi. Su örneklerinde 226Ra, 232Th, 40K ve 3H radyoizotop konsantrasyonlarının sırasıyla 0,36-2,82 Bq/L, 0,37-1,92 Bq/L, 13,28-20,96 Bq/L ve 2,51-3,53 Bq/L aralığında değiştiği belirlendi. Ortalama radyoaktivite konsantrasyonları ise 226Ra için 1,80±0,54 Bq/L, 232Th için 1,13±0,51 Bq/L, 40K için 17,22±2,61 Bq/L ve 3H için 2,88±0,47 Bq/L olarak bulunmuştur. Bulunan aktivite konsantrasyonları uluslararası kuruluşlar tarafından önerilen değerlerle kıyaslandı ve 232Th radyoizotopu hariç önerilen değerlerden daha düşük oldukları belirlendi. Sonuç olarak, yapılan çalışma ile Ovit Dağbaşı Gölü ziyaretçileri için incelenen radyoiztoplardan kaynaklı radyoaktivitenin bir sağlık riski oluşturmayacağı gösterilmiştir.

Kaynakça

  • Amin, R.M. (2013). Radioactivity levels in some sediments and water samples from Qarun Lake by low–level gamma spectrometry. International Journal of Science and Research, 2319-7064.
  • ASTM D4107-08 (2006). Standard Test Method for Tritium in Drinking Water. ASTM International, West Conshohocken, http://dx.doi.org/10.1520/D4107-08.
  • Currie, L.A. (1968). Limits for qualitative detection and quantitative determination. Analytical Chemistry, 40, 586-593.
  • Dizman, S., Kağanoğlu, Ç.F., İpek, N., Keser, R. (2018). Assessments of tritium concentration in the some water samples around Rize. Turkish Journal of Materials, 3(1), 53-57.
  • Dizman, S., Görür, F.K., Keser, R., Görür, O. (2019). The assessment of radioactivity and radiological hazards in soils of Bolu province, Turkey. Environmental Forensics, 20, 211–218.
  • Dizman, S., Mukhtarli, O. (2021). Tritium concentrations and consequent doses in bottled natural and mineral waters sold in Turkey and Azerbaijan. Chemosphere, 267, 128721.
  • EC, (1998). Council Directive 98/83/EC of November 3 on the quality of water intended for human consumption. Official Journal of the European Communities, L330/32-330/54.
  • Grigorescu, E.L., Cristina Razdolescu, A., Sahagia, M., Luca, A., Ivan, C., Tanase, G. (2002). Standardization of Eu-152. Applied Radiation and Isotopes, 56, 435–439.
  • Imam, N., El-Sayed, S.M., El-Sherif Goher, M. (2020). Risk assessments and spatial distributions of natural radioactivity and heavy metals in Nasser Lake, Egypt. Environmental Science and Pollution Research, 27, 25475–25493.
  • Kim, S.B., Rowan, D., Chen, J., Rodgers, C.M.C., Rennie, M.D. (2018). Tritium in fish from remote lakes in northwestern Ontario, Canada. Journal of Environmental Radioactivity, 195, 104-108.
  • Lickly, T.D., Blanchard, F.A., Takahashi, I.T. (1983). Survey of tritium radioactivity in Lake Huron surface water. Environment International, 9, 221-224.
  • Ononugbo, C.P., Nwaka, B.U. (2017). Natural Radioactivity and Radiological Risk Estimation of Drinking Water from Okposi and Uburu Salt Lake Area, Ebonyi State, Nigeria. Physical Science International Journal, 15(3), 1-15.
  • Otansev, P., Taşkın, H., Başsarı, A., Varinlioğlu, A. (2016). Distribution and environmental impacts of heavy metals and radioactivity in sediment and seawater samples of the Marmara Sea. Chemosphere, 154, 266–275.
  • Palomo, M., Penalver, A., Aguilar, C., Borrull, F. (2007). Tritium activity levels in environmental water samples from different origins. Applied Radiation and Isotopes, 65, 1048–1056.
  • TCSB, (2005). İnsani Tüketim Amaclı Sular Hakkında Yönetmelik. Official Journal 25730, Turkey.
  • UNSCEAR, (1993). Exposure from Natural Sources of Radiation of Radiation. Report to the General Assembly. United Nations, 1993.
  • URL-1, (2020). https://www.kulturportali.gov.tr/turkiye/rize/gezilecekyer/ovit-dagbasi-golu, 02 Şubat 2021.
  • WHO, (2004). Guidelines for drinking water quality. First Addendum to the 3rd edn., vol 1 recommendations, 491–493.
  • WHO, 2011. Library Cataloguing in Publication Data NLM classification: WA 675.

Determination of Natural Radioactivity Concentrations in Ovit Dağbaşı Lake Water

Yıl 2021, Cilt: 2 Sayı: 1, 16 - 24, 29.06.2021
https://doi.org/10.53501/rteufemud.918621

Öz

All living creatures in nature are constantly exposed to ionizing radiation, which is emitted from natural and artificial radiation sources. For this reason, it is important to monitor the levels of radioactivity in living spaces and visited areas. In this study, 226Ra, 232Th, 40K and 3H concentrations in water samples taken from Ovit Dağbaşı Lake located on İkizdere-İspir highway in İkizdere district of Rize province were determined using a high purity germanium detector and a liquid scintillation counter. It was determined that 226Ra, 232Th, 40K and 3H radioisotope concentrations in the water samples varied between 0.36-2.82 Bq/L, 0.37-1.92 Bq/L, 13.28-20.96 Bq/L ve 2.51-3.53 Bq/L, respectively. Mean radioactivity concentrations were found as 1.80±0.54 Bq/L for 226Ra, 1.13±0.51 Bq/kL for 232Th, 17.22±2.61 Bq/L for 40K and 2.88±0.47 Bq/L for 3H. The activity concentrations found were compared with the values recommended by international organizations and were found to be lower than the recommended values except for the 232Th radioisotope. As a result, it has been shown with this study that the radioactivity caused by the examined radioistopes will not pose a health risk for the visitors of Ovit Dağbaşı Lake.

Kaynakça

  • Amin, R.M. (2013). Radioactivity levels in some sediments and water samples from Qarun Lake by low–level gamma spectrometry. International Journal of Science and Research, 2319-7064.
  • ASTM D4107-08 (2006). Standard Test Method for Tritium in Drinking Water. ASTM International, West Conshohocken, http://dx.doi.org/10.1520/D4107-08.
  • Currie, L.A. (1968). Limits for qualitative detection and quantitative determination. Analytical Chemistry, 40, 586-593.
  • Dizman, S., Kağanoğlu, Ç.F., İpek, N., Keser, R. (2018). Assessments of tritium concentration in the some water samples around Rize. Turkish Journal of Materials, 3(1), 53-57.
  • Dizman, S., Görür, F.K., Keser, R., Görür, O. (2019). The assessment of radioactivity and radiological hazards in soils of Bolu province, Turkey. Environmental Forensics, 20, 211–218.
  • Dizman, S., Mukhtarli, O. (2021). Tritium concentrations and consequent doses in bottled natural and mineral waters sold in Turkey and Azerbaijan. Chemosphere, 267, 128721.
  • EC, (1998). Council Directive 98/83/EC of November 3 on the quality of water intended for human consumption. Official Journal of the European Communities, L330/32-330/54.
  • Grigorescu, E.L., Cristina Razdolescu, A., Sahagia, M., Luca, A., Ivan, C., Tanase, G. (2002). Standardization of Eu-152. Applied Radiation and Isotopes, 56, 435–439.
  • Imam, N., El-Sayed, S.M., El-Sherif Goher, M. (2020). Risk assessments and spatial distributions of natural radioactivity and heavy metals in Nasser Lake, Egypt. Environmental Science and Pollution Research, 27, 25475–25493.
  • Kim, S.B., Rowan, D., Chen, J., Rodgers, C.M.C., Rennie, M.D. (2018). Tritium in fish from remote lakes in northwestern Ontario, Canada. Journal of Environmental Radioactivity, 195, 104-108.
  • Lickly, T.D., Blanchard, F.A., Takahashi, I.T. (1983). Survey of tritium radioactivity in Lake Huron surface water. Environment International, 9, 221-224.
  • Ononugbo, C.P., Nwaka, B.U. (2017). Natural Radioactivity and Radiological Risk Estimation of Drinking Water from Okposi and Uburu Salt Lake Area, Ebonyi State, Nigeria. Physical Science International Journal, 15(3), 1-15.
  • Otansev, P., Taşkın, H., Başsarı, A., Varinlioğlu, A. (2016). Distribution and environmental impacts of heavy metals and radioactivity in sediment and seawater samples of the Marmara Sea. Chemosphere, 154, 266–275.
  • Palomo, M., Penalver, A., Aguilar, C., Borrull, F. (2007). Tritium activity levels in environmental water samples from different origins. Applied Radiation and Isotopes, 65, 1048–1056.
  • TCSB, (2005). İnsani Tüketim Amaclı Sular Hakkında Yönetmelik. Official Journal 25730, Turkey.
  • UNSCEAR, (1993). Exposure from Natural Sources of Radiation of Radiation. Report to the General Assembly. United Nations, 1993.
  • URL-1, (2020). https://www.kulturportali.gov.tr/turkiye/rize/gezilecekyer/ovit-dagbasi-golu, 02 Şubat 2021.
  • WHO, (2004). Guidelines for drinking water quality. First Addendum to the 3rd edn., vol 1 recommendations, 491–493.
  • WHO, 2011. Library Cataloguing in Publication Data NLM classification: WA 675.
Toplam 19 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Araştırma Makaleleri
Yazarlar

Serdar Dizman 0000-0002-6511-9526

Selim Sarı 0000-0003-4914-3339

Yayımlanma Tarihi 29 Haziran 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 2 Sayı: 1

Kaynak Göster

APA Dizman, S., & Sarı, S. (2021). Ovit Dağbaşı Gölü Suyunda Doğal Radyoaktivite Konsantrasyonlarının Belirlenmesi. Recep Tayyip Erdoğan Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 2(1), 16-24. https://doi.org/10.53501/rteufemud.918621

Taranılan Dizinler

27717   22936   22937  22938   22939     22941   23010    23011   23019  23025